Geometric and Topological Representation Learning

Semih Cantürk

Université m de Montréal

Hamed Shirzad

Qi Yan

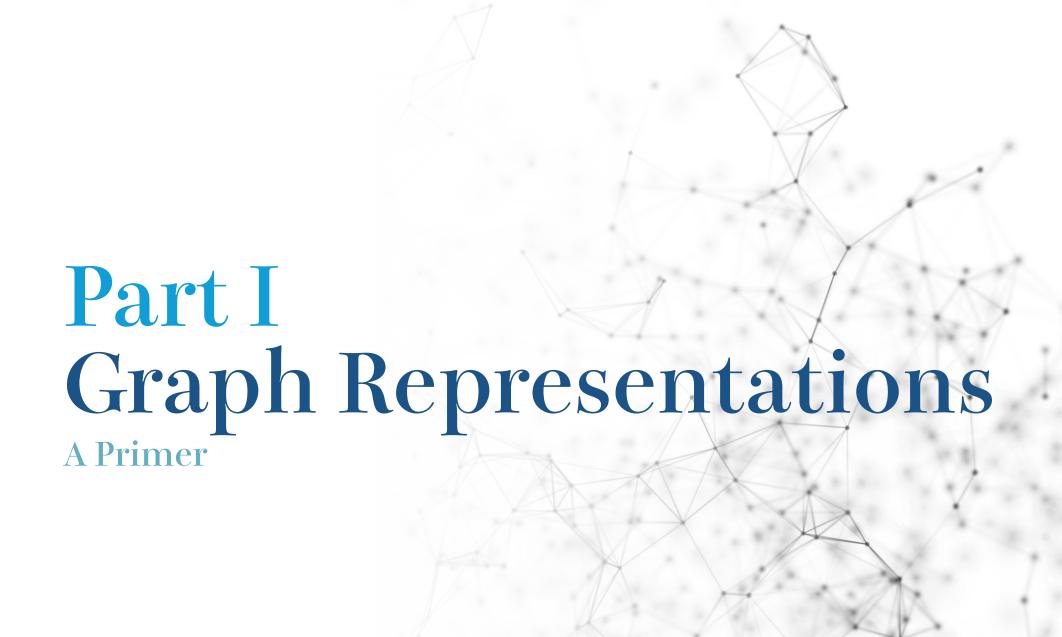
MLSP 35th IEEE International Workshop on Machine Learning for Signal Processing

"Signal Processing in the Age of Large Language Models"

AUGUST 31 - SEPTEMBER 3 ISTANBUL / TÜRKİY

TANBUL LUTFI KIRDAR INTERNATIONAL CONVENTION AND EXHIBITION CENTRE - ICE

mlsp2025graphs.github.io



Part I: Outline

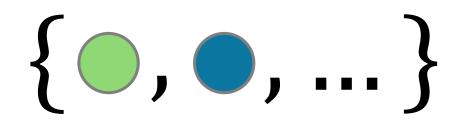
- 1. Primer on Graph Machine Learning
 - 1. Graph Representations: A Primer
 - 2. Early Methods
 - 3. Graph Neural Networks (GNN)
 - 4. Graph Convolutions
 - 5. Graph Isomorphism and Expressivity

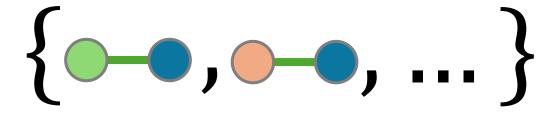
Graphs

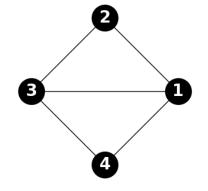
- Set of Nodes = V
 - ullet Optionally with **features** X

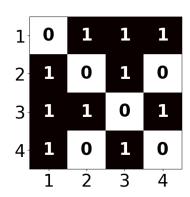
• Set of Edges = E

• Adjacency Matrix = A









Graphs

Graphs G are defined by:

Vertices

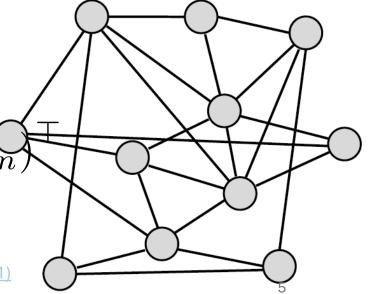
$$V = \{v_1, \dots, v_n\}$$

- Edges (undirected) $E=\{e_k=\{i,j\}:i,j\in V\}\subseteq V imes V$
- Adjacency matrix $A: a_{i,j} = 1 \Leftrightarrow (i,j) \in E$
- Neighborhood: $\mathcal{N}(i) = \{j : (i,j) \in E\}$
- Degree:

$$d_i = |\mathcal{N}(i)|$$

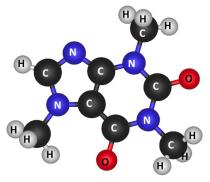
Attributes:

- Node features: $\mathbf{x}:V o\mathbb{R}^d$ $\mathbf{X}:(\mathbf{x}_1,\ldots,\mathbf{x}_n)$
- Edge features: $\mathbf{e}:E o \mathbb{R}^{d'}$

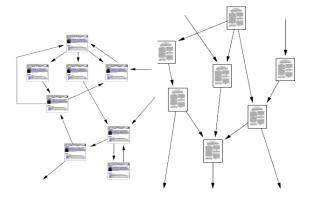


Abundance of graph-structured data

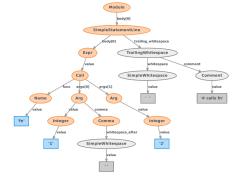
Social networks



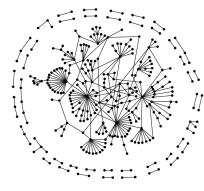
Molecular structure



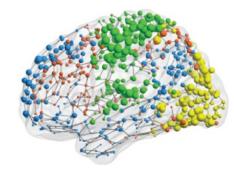
Knowledge graphs



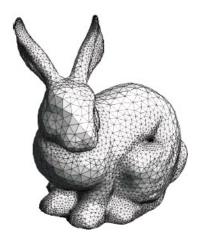
The syntax of language and code



Biomedical networks



Networks of neurons



3D shapes

Types of tasks

Node-level tasks

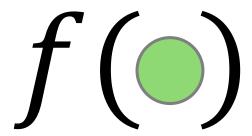
- Node classification
- Node clustering
- Node regression

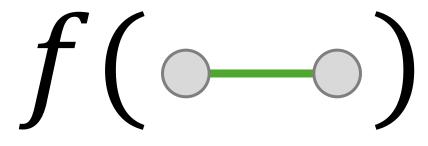
Edge-level tasks

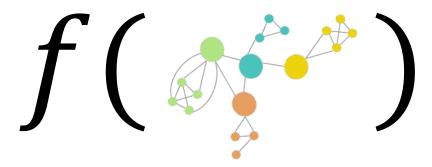
- Link prediction
- Edge classification
- Knowledge graph completion

Graph-level tasks

- Graph classification
- o Graph regression

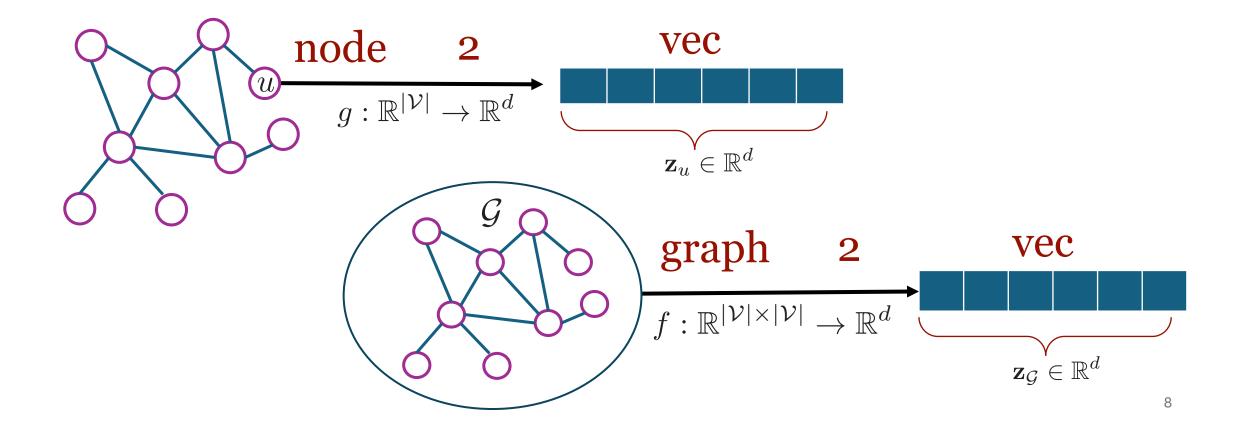






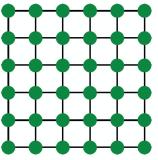
What is graph representation learning?

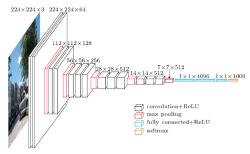
Goal: To learn useful node and graph representations without hand-crafted features



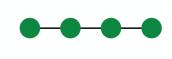
Why is it hard?

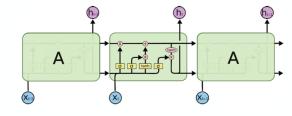
- Most deep learning methods are designed for regular sequences:
 - CNNs for regular grids: audio (1D), images (2D/3D), ...



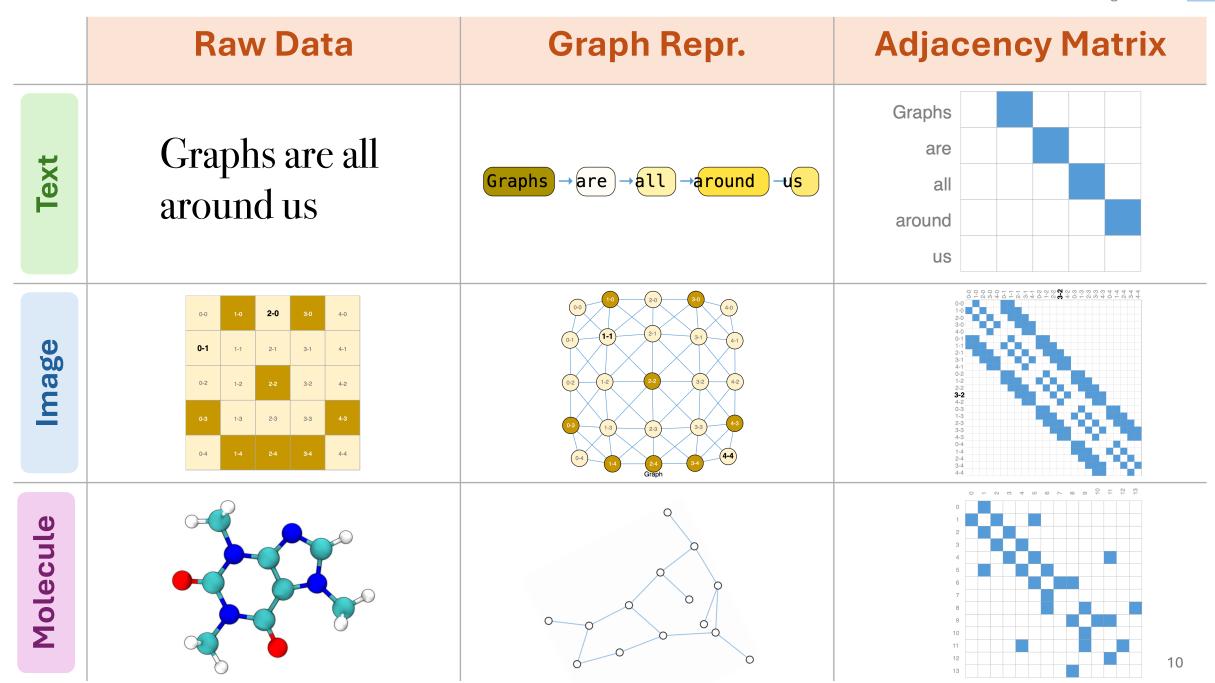


• RNNs for sequences: text, audio, ...

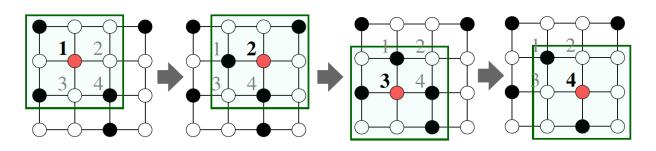


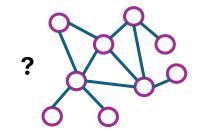


Graphs lack such regular geometric structure!



Complex geometric structure
 (often no straightforward notions of spatial locality)





2. Inherent symmetries lead to non-unique representations

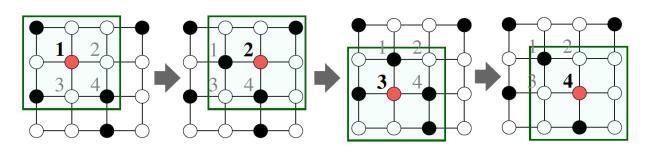
Graph-level functions must be invariant to node permutations

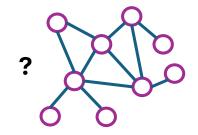
$$f: \mathbb{R}^{|\mathcal{V}| \times |\mathcal{V}|} \to \mathbb{R}^d$$
 $f(\mathbf{PAP}^\top) = f(\mathbf{A}), \forall \mathbf{P} \in \mathbb{P}$

$$q: \mathbb{R}^{|\mathcal{V}| \times |\mathcal{V}|} \to \mathbb{R}^{|\mathcal{V}| \times d}$$

$$g(\mathbf{P}\mathbf{A}\mathbf{P}^{\top}) = \mathbf{P}g(\mathbf{A}), \forall \mathbf{P} \in \mathbb{P}$$

1. Complex geometric structure (often no straightforward notions of spatial locality)





2. Inherent symmetries lead to non-unique representations

function on matrix

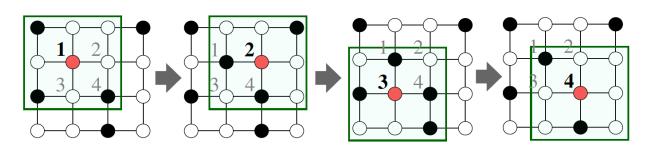
function on original adjacency matrix

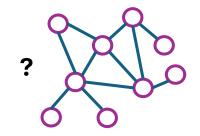
permuted adjacency
$$f: \mathbb{R}^{|\mathcal{V}| imes |\mathcal{V}|} o \mathbb{R}^d$$

$$g: \mathbb{R}^{|\mathcal{V}| \times |\mathcal{V}|} \to \mathbb{R}^{|\mathcal{V}| \times d}$$

$$\frac{f(\mathbf{P}\mathbf{A}\mathbf{P}^{\top})}{g(\mathbf{P}\mathbf{A}\mathbf{P}^{\top})} = f(\mathbf{A}), \forall \mathbf{P} \in \mathbb{P}$$

Complex geometric structure
 (often no straightforward notions of spatial locality)





2. Inherent symmetries lead to non-unique representations

Node-level functions must be **equivariant** to node permutations

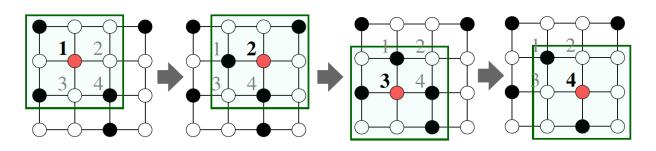
$$f: \mathbb{R}^{|\mathcal{V}| \times |\mathcal{V}|} \to \mathbb{R}^d$$

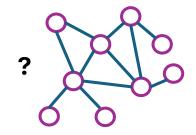
$$f(\mathbf{P}\mathbf{A}\mathbf{P}^{\top}) = f(\mathbf{A}), \forall \mathbf{P} \in \mathbb{P}$$

$$g: \mathbb{R}^{|\mathcal{V}| \times |\mathcal{V}|} \to \mathbb{R}^{|\mathcal{V}| \times d}$$

$$g(\mathbf{P}\mathbf{A}\mathbf{P}^{\top}) = \mathbf{P}g(\mathbf{A}), \forall \mathbf{P} \in \mathbb{P}$$

1. Complex geometric structure (often no straightforward notions of spatial locality)





2. Inherent symmetries lead to non-unique representations

$$f: \mathbb{R}^{|\mathcal{V}| \times |\mathcal{V}|} \to \mathbb{R}^d$$

equivalent to output

permutation applied
$$g: \mathbb{R}^{|\mathcal{V}| \times |\mathcal{V}|} \to \mathbb{R}^{|\mathcal{V}| \times d}$$

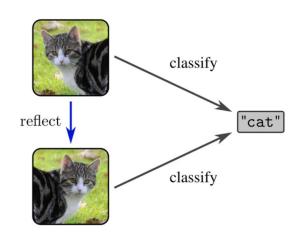
$$f(\mathbf{P}\mathbf{A}\mathbf{P}^{\top}) = f(\mathbf{A}), \forall \mathbf{P} \in \mathbb{P}$$

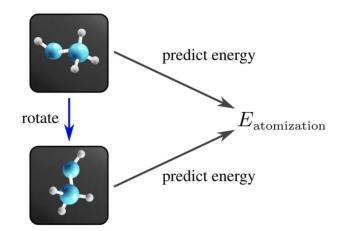
$$g(\mathbf{P}\mathbf{A}\mathbf{P}^{ op}) = \mathbf{P}g(\mathbf{A}), orall \mathbf{P} \in \mathbb{P}$$

Data invariance & equivariance

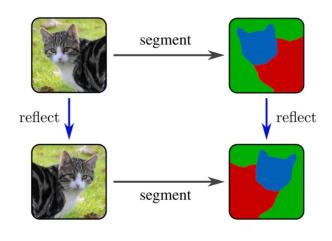
Invariance

Computer Vision





Equivariance



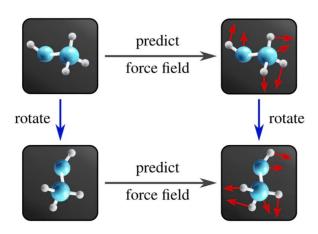
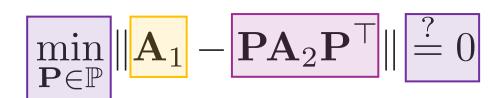


Illustration credit: Maurice Weiler

Isomorphism is often a bottleneck

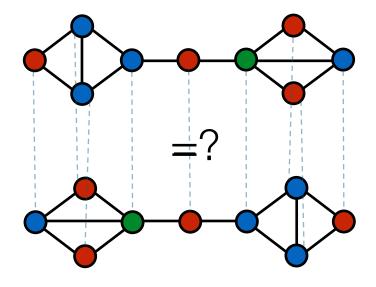
- Even determining whether two graphs are the same (isomorphism testing) is computationally difficult!
- "NP-indeterminate" problem



Does there exist a permutation matrix such that

the adjacency matrix of graph one equals

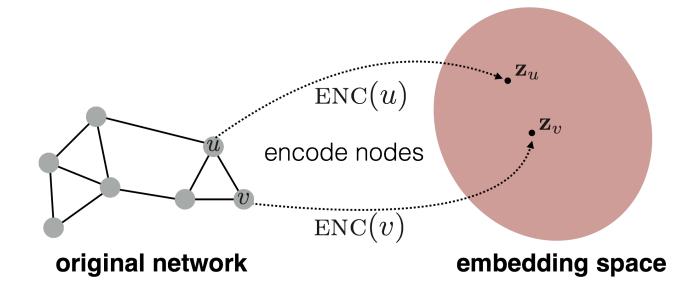
a permutation of the adjacency matrix of graph two?



Classic approach: Node Embeddings

 Goal is to encode nodes so that similarity in the embedding space (e.g., dot product) approximates similarity in the original graph

similarity $(u, v) \approx \mathbf{z}_v^{\top} \mathbf{z}_u$



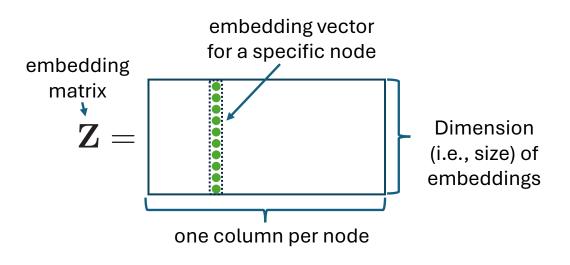
Node embeddings

 Traditional node embedding approaches use a shallow encoder: encoder is just an embedding-lookup

$$ENC(v) = \mathbf{Z}\mathbf{v}$$

 $\mathbf{Z} \in \mathbb{R}^{d imes |\mathcal{V}|}$ matrix, each column is node embedding [what we learn!]

 $\mathbf{v} \in \mathbb{I}^{|\mathcal{V}|}$ indicator vector, all zeroes except one indicating node v



Node embeddings: Examples

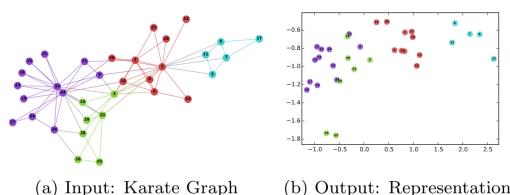
Adjacency-based similarity (HOPE; Ou et al. 2016):

$$\mathbf{z}_u^{\top} \mathbf{z}_v \approx \mathbf{A}^k [u, v]$$

kth power of the adjacency matrix

walks of length-k between \boldsymbol{u} and \boldsymbol{v}

Random-walk based similarity (DeepWalk; Perozzi et al. 2014):



probability that u and v cooccur on a random walk over the network

(b) Output: Representation

Limitations of traditional node embeddings

1. O(|V|) parameters are needed:

There is no parameter sharing and every node has its own unique embedding vector

2. Inherently "transductive":

Cannot generate embeddings for nodes that were not seen during training

3. Does not incorporate node features:

Many graphs have features that we can and should leverage

Towards Graph Neural Networks

Traditional node embeddings

Encoder is just a shallow lookup from an embedding matrix

$$ENC(v) = \mathbf{Z}\mathbf{v}$$

$$\mathbf{Z} \in \mathbb{R}^{d imes |\mathcal{V}|}$$
 Embedding matrix, each column is node embedding

$$\mathbf{v} \in \mathbb{T}^{|\mathcal{V}|}$$
 indicator vector for node v

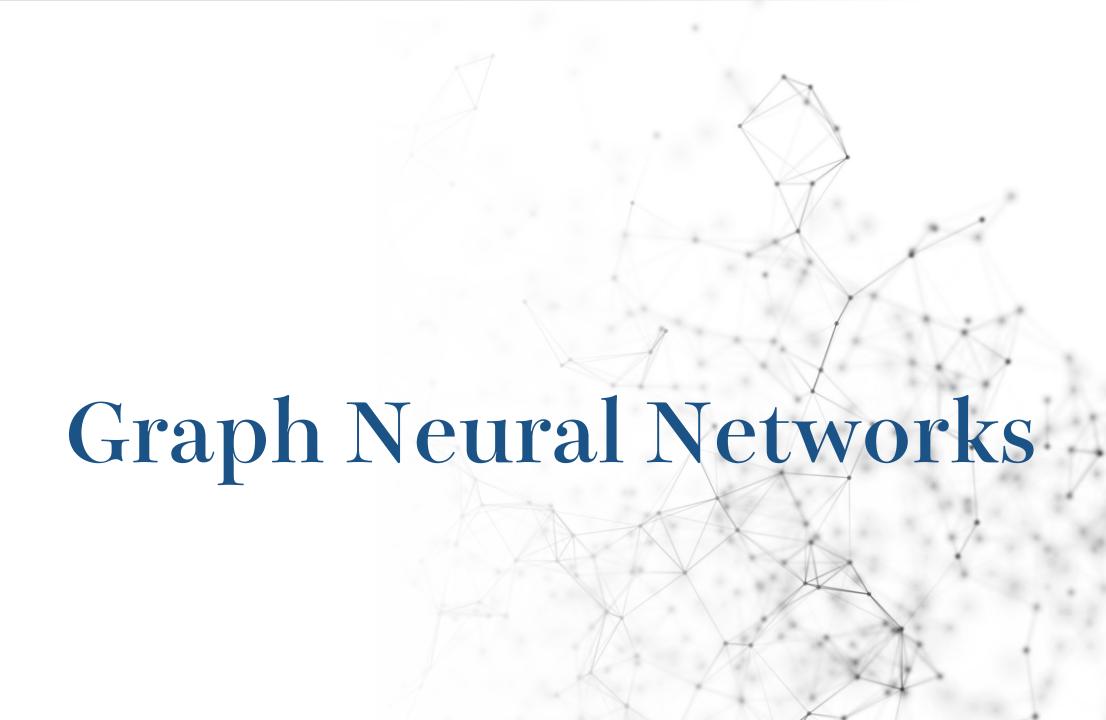
Graph neural networks

Encoder is complex function of graph structure and node features

$$\text{ENC}(v) = f(\mathbf{A}, \mathbf{X})$$

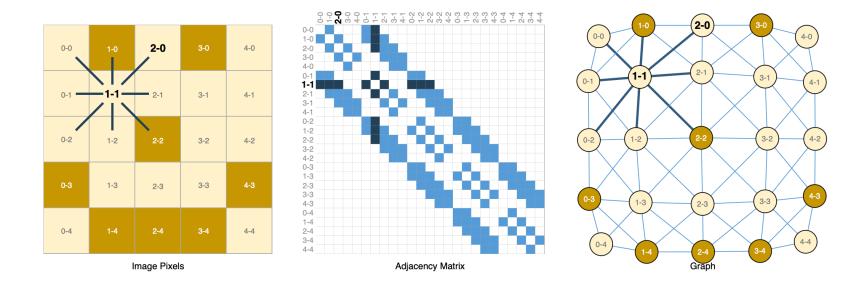
$$\mathbf{A} \in \mathbb{R}^{|\mathcal{V}| imes |\mathcal{V}|}$$
 adjacency matrix for the graph

$$\mathbf{X} \in \mathbb{R}^{|\mathcal{V}| \times d}$$
 matrix of node features



Intuition: Convolutional Networks

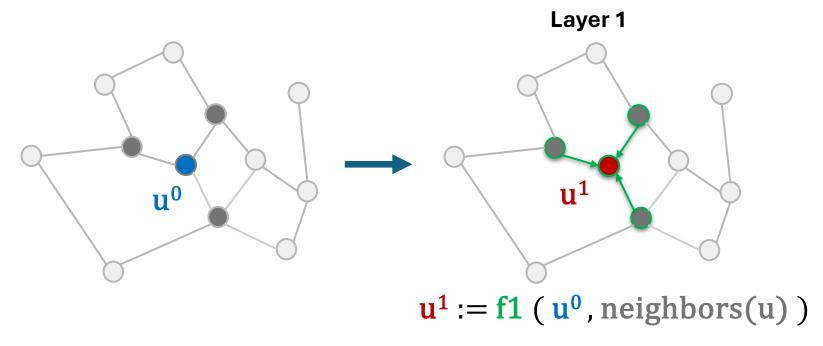
• Images as graphs: Filters capture neighborhood on a grid graph



- GNNs generalize this intuition to general graphs
- Challenge: neighborhoods look different!

Graph Neural Networks

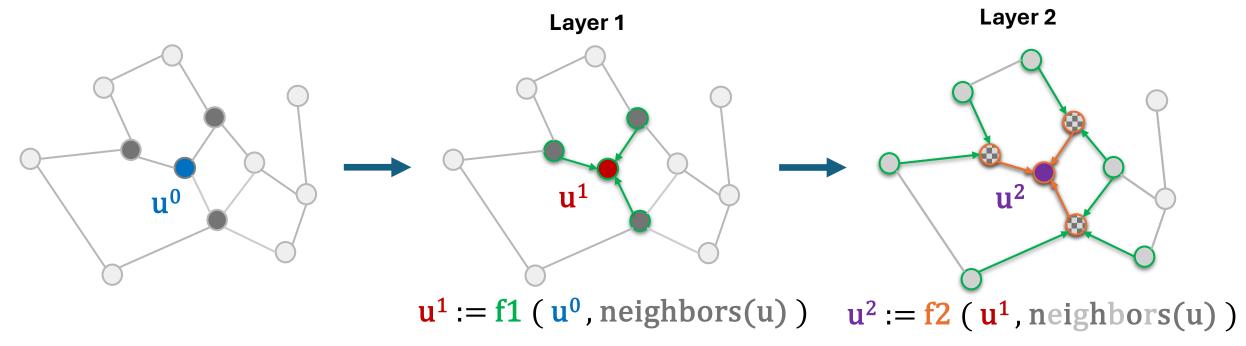
 Most GNNs are based on the idea of iterative neighborhood aggregation, a.k.a. Message Passing



the update is done in parallel for all nodes

Graph Neural Networks

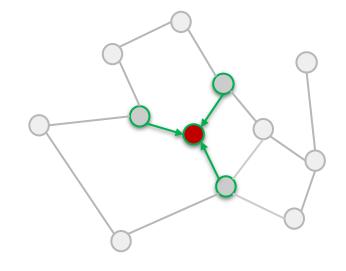
 Most GNNs are based on the idea of iterative neighborhood aggregation, a.k.a. Message Passing



the update is done in parallel for all nodes

The family of MPNNs

 Message Passing Neural Networks (MPNN) are a general class of GNNs



$$\mathbf{h}_{u}^{(k+1)} = \text{UPDATE}^{(k)} \left(\mathbf{h}_{u}^{(k)}, \text{AGGREGATE}^{(k)} (\{\mathbf{h}_{v}^{(k)}, \forall v \in \mathcal{N}(u)\}) \right)$$

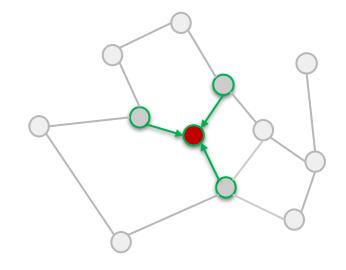
$$= \text{UPDATE}^{(k)} \left(\mathbf{h}_{u}^{(k)}, \mathbf{m}_{\mathcal{N}(u)}^{(k)} \right), \qquad \land$$

Information aggregated from neighboring nodes

(sometimes called the "messages" from the neighbors)

The family of MPNNs

 Message Passing Neural Networks (MPNN) are a general class of GNNs



$$\mathbf{h}_{u}^{(k+1)} = \underbrace{\mathsf{UPDATE}^{(k)} \left(\mathbf{h}_{u}^{(k)}, \mathsf{AGGREGATE}^{(k)} (\{\mathbf{h}_{v}^{(k)}, \forall v \in \mathcal{N}(u)\}) \right)}_{\mathsf{Information aggregated from}}$$

Combined "new" embedding of this node with the previous layer

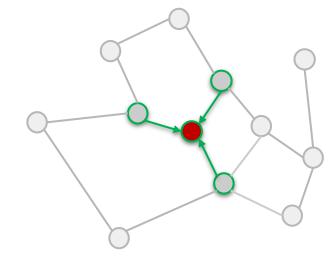
(sometimes called the "messages" from the neighbors)

neighboring nodes

The family of MPNNs

 Message Passing Neural Networks (MPNN) are a general class of GNNs

Updated node embedding



$$\mathbf{h}_{u}^{(k+1)} = \underbrace{\mathsf{UPDATE}^{(k)} \left(\mathbf{h}_{u}^{(k)}, \mathsf{AGGREGATE}^{(k)} (\{ \mathbf{h}_{v}^{(k)}, \forall v \in \mathcal{N}(u) \}) \right)}_{= \mathsf{UPDATE}^{(k)} \left(\mathbf{h}_{u}^{(k)}, \mathbf{m}_{\mathcal{N}(u)}^{(k)} \right),$$

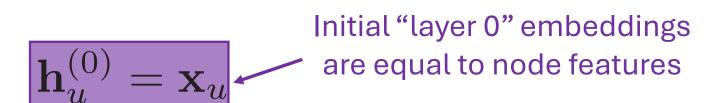
Information aggregated from neighboring nodes

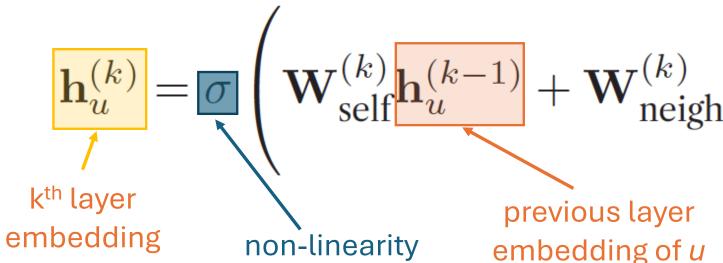
Combined "new" embedding of this node with the previous layer

(sometimes called the "messages" from the neighbors)

The basic Graph Neural Network

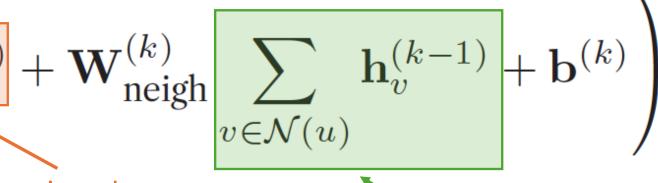
• A "basic" GNN (Scarselli et al., 2008)





(e.g., ReLU)

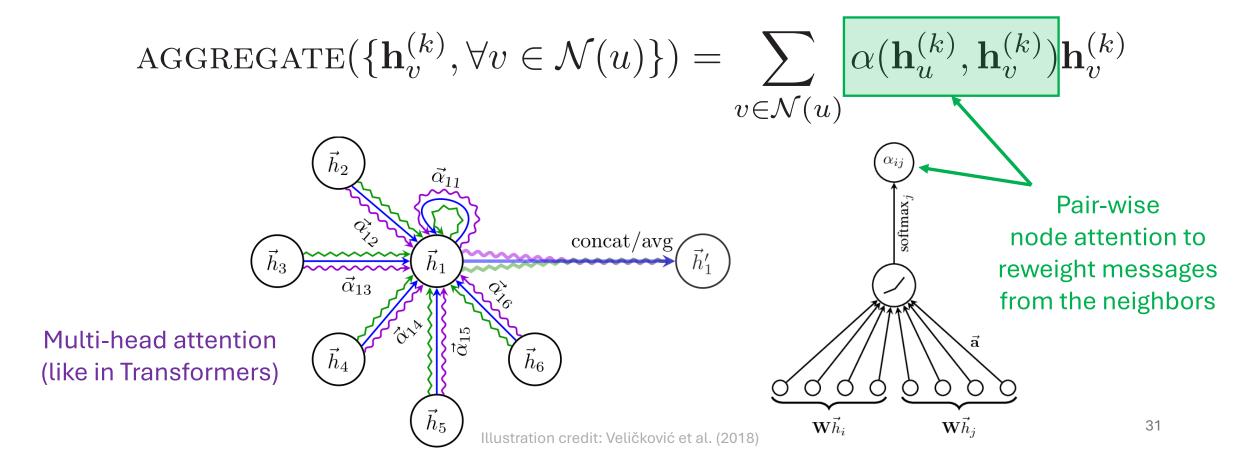
of *v*



sum of neighbor's previous layer embeddings

Graph Attention Networks (GATs)

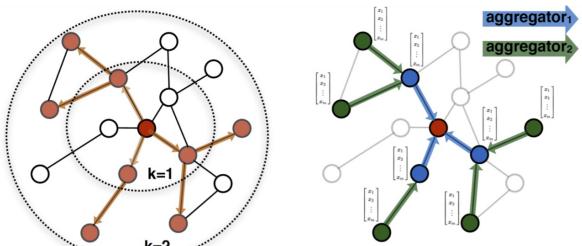
Aggregating with self-attention (local Transformer on graphs),
 Veličković et al. (2018)



Generalized neighborhood aggregation

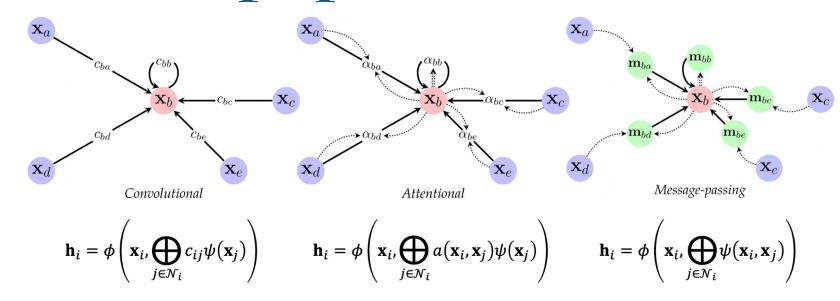
 Aggregating more complex transformations of the neighbor features, as in Hamilton et al. (2017)'s GraphSAGE:

AGGREGATE
$$(\{\mathbf{h}_v^{(k)}, \forall v \in \mathcal{N}(u)\}) = \frac{1}{|\mathcal{N}(u)|} \sum_{v \in \mathcal{N}(u)} \text{MLP}(\mathbf{h}_v^{(k)})$$



Explore the neighborhood (e.g., random walks) and aggregate with e.g. MLP or RNN instead of sum or average

List of most popular MPNNs



- **▶GCN**: Graph Convolutional Network (Kipf and Welling, 2017)
- >GAT: Graph Attention Network (Veličković et al., 2018)
- ➤ GatedGCN: Residual Gated Graph ConvNets (Bresson & Laurent, 2018)
- **>GIN:** Graph Isomorphism Network (Xu et al., 2018)

A few useful tricks

- Include **edge** and/or **graph-level features** during message-passing (e.g., Battaglia et al., 2018)
- Residual connections between layers, GraphNorm, ...
- Jumping knowledge (JK) connections (Xu et al., 2018):

$$\mathbf{z}_u = \mathbf{h}^{(K)}$$

$$\mathbf{z}_u = f([\mathbf{x}_u, \mathbf{h}_u^{(1)}, ..., \mathbf{h}_u^{(K)}])$$

Instead of using the final GNN layer output as the node embeddings

Define the node embeddings as a function of the representations at all intermediate layers!

Advantages of MPNNs

- Number of parameters is independent of the graph size:
 The parameters in the GNN layers depend only on the dimension of the feature inputs
- Inherently "inductive":
 After training GNNs can be used to infer embeddings on unseen graphs
- Naturally incorporate node features:
 GNNs learn by aggregating node features over local neighborhoods

Readout layer

- After L message-passing layers, we get embeddings $h_u^{\ L}$ at each u
- How to convert to a final prediction?
- Use a readout layer, aka prediction/output heads

Node-level task:

$$\mathbf{g}_v = f_{\text{readout}}(\mathbf{h}_v^{(L)})$$

Graph-level task:

$$\mathbf{h}_G = f_{\text{readout}}(\{\{\mathbf{h}_v^{(L)} \mid v \in V\}\})$$

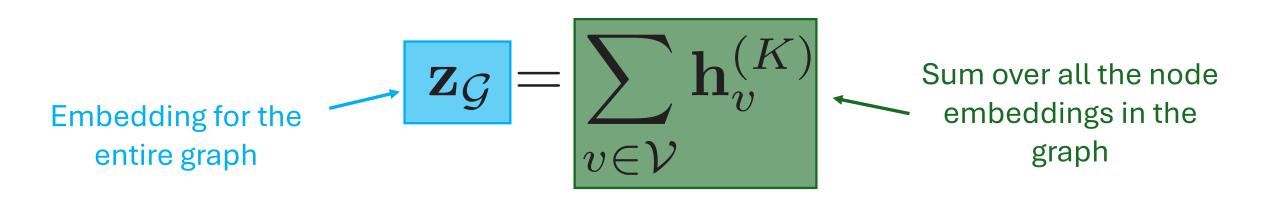
Edge-level task:

$$\mathbf{g}_{u,v} = f_{\text{readout}}(\mathbf{h}_u^{(L)}, \mathbf{h}_v^{(L)})$$

Graph classification: Node pooling

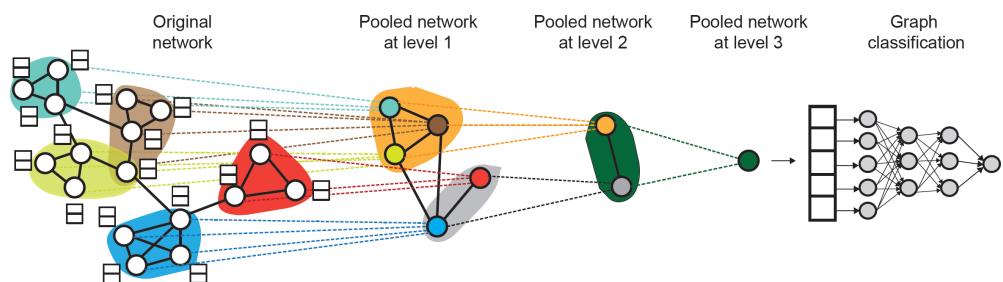
- Pool node embeddings

 get embedding for the whole graph
- The pooling function must be invariant w.r.t. node ordering
- Sum pooling: simply sum the node embeddings:

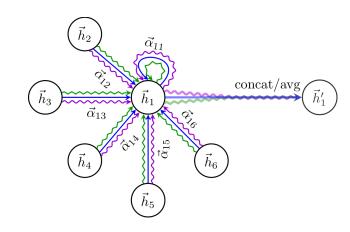


Graph classification: Node pooling

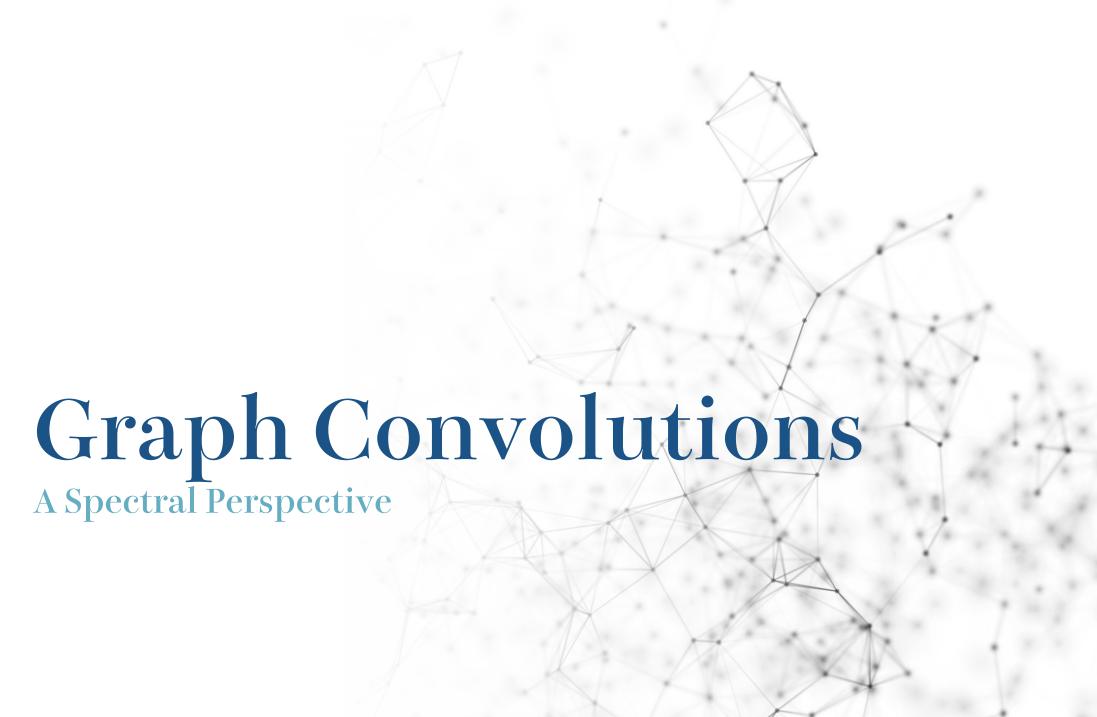
- Hierarchical pooling (e.g., Ying et al. (2018)'s DiffPool)
 - 1. Coarsen graph by clustering or removing nodes based on their embeddings
 - 2. Run another GNN on coarsened graph
 - 3. Repeat until graph is just a single node (or use a final sum pooling layer)



Summary of MPNNs



- MPNN = GNN based on "Neural Message Passing" paradigm
- A layer of MPNN is principally composed from:
 - Message block: computes a message along an edge between nodes u and v
 - Aggregation block: pools all incoming messages from the neighborhood of u
 - Update block: combines node representation with the neighborhood info
- With appropriate "readout" block, MPNN can be trained end-to-end for any of the 3 graph tasks (node, link, or graph –level prediction)



Deep Learning success on Euclidean domains

Doubt thou the stars are fire. Doubt that the sun doth move, Doubt truth to be a liar, But never doubt I love ...

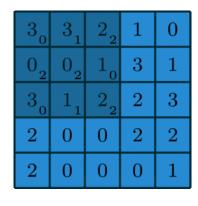
Text

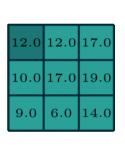
Audio signals

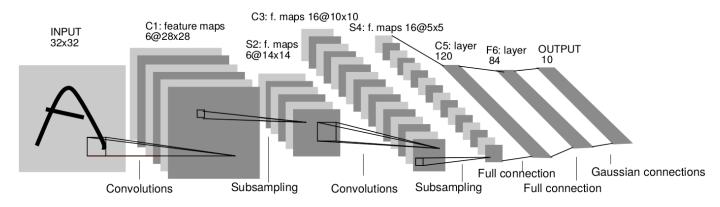
Images

 What geometric structure in images, speech, video, text, is exploited by CNNs?

Key properties of CNNs







Convolutional (Translation invariance)

Scale Separation (Compositionality)

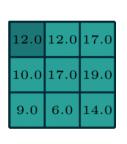
Filters localized in space (Deformation Stability)

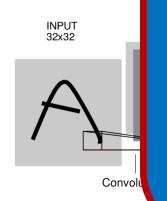
O(1) parameters per layer (independent of input image size n)

O(n) complexity per layer (filtering done in the spatial domain)

Key properties of Cl

30	3,	2_2	1	0
0_2	0_2	1_{0}	3	1
30	1,	2_2	2	3
2	0	0	2	2
2	0	0	0	1





Can we extend convolutions to the graph domain?

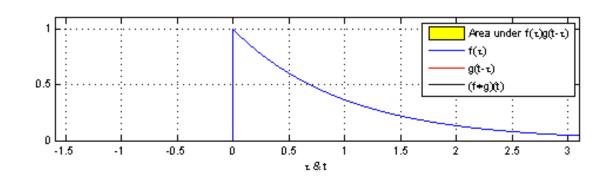
How do the GNNs we just saw fit into this?

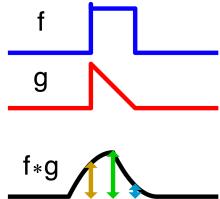
IONS

- ©Convolutional (Translation invariance)
- Scale Separation (Compositionality)
- Filters localized in space (Deformation Stability)
- $\mathfrak{S}_{0}(1)$ parameters per layer (independent of input image size n)
- $\mathfrak{S}O(n)$ complexity per layer (filtering done in the spatial domain)

Convolutions

- Mathematical operation on two functions that expresses how the shape of one is modified by the other
- Amount of overlap of one function as it is shifted over another
- This makes them great feature extractors via template matching





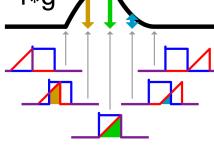


Illustration credit: Wikimedia Commons

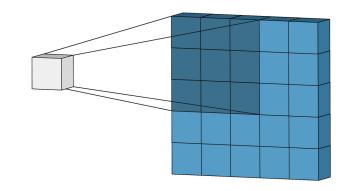
Convolutions

Convolution as template matching:

$$h_i^{\ell+1} = w^\ell * h_i^\ell$$

$$=\sum_{j\in\Omega}\langle w_j^\ell,h_{i-j}^\ell
angle$$

$$=\sum_{j\in{\cal N}_i}\langle w_j^\ell,h_{ij}^\ell
angle$$



30	3	2_2	1	0
0_2	0_2	1_{0}	3	1
30	1,	22	2	3
2	0	0	2	2
2	0	0	0	1

12.0	12.0	17.0
10.0	17.0	19.0
9.0	6.0	14.0

Convolutions & the Fourier Transform

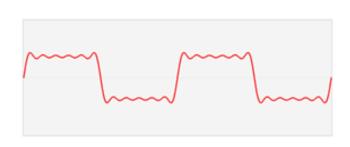
 The Convolution Theorem states that the Fourier transform of the convolution of two functions is the pointwise product of their Fourier transforms:

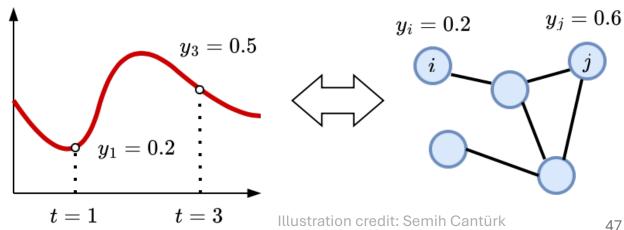
$$\mathcal{F}(w*h) = \mathcal{F}(w) \odot \mathcal{F}(h) \implies w*h = \mathcal{F}^{-1}(\mathcal{F}(w) \odot \mathcal{F}(h))$$

• In general, the Fourier transform has $O(n^2)$ complexity, but if the domain is a grid, then the complexity can be reduced to $O(n \log n)$ with FFT

Convolutions & the Fourier Transform

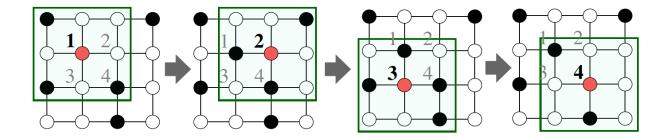
- FT decomposes a signal into frequency components
- A mapping from "time domain" to "frequency" domain...
 - ... but wait what do these even mean on a static graph?
- Our signals are defined over nodes instead





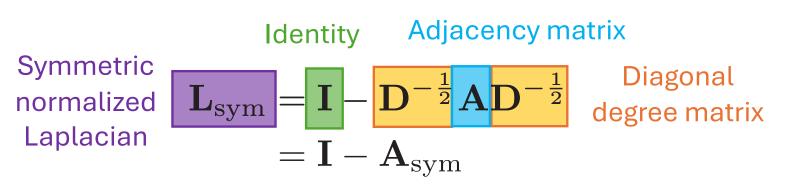
GNNs and graph convolutions

• Intuition: The aggregation over node neighbors in a GNN is akin to a "center-surround" convolutional filter



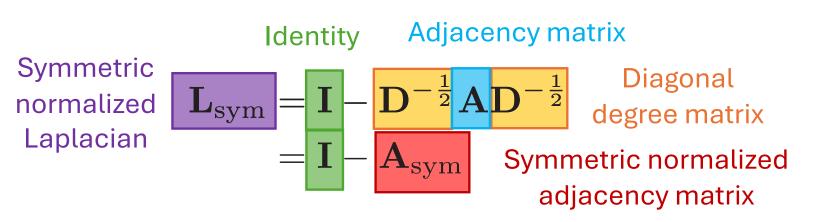
• Theory (at a high-level): GNNs can be derived as a generalization of convolutions to the graph domain, based on graph Fourier analysis

• Fact 1: We can define the Laplacian operator for a graph G = (V, E, A)



Intuition: This Laplacian operator measures how much a signal differs between a node and its immediate neighborhood

• Fact 1: We can define the Laplacian operator for a graph G = (V, E, A)



Intuition: This Laplacian operator measures how much a signal differs between a node and its immediate neighborhood

• Fact 1: We can define the Laplacian operator for a graph G = (V, E, A)

Symmetric normalized Laplacian
$$\mathbf{L}_{\mathrm{sym}} = \mathbf{I} - \mathbf{D}^{-\frac{1}{2}} \mathbf{A} \mathbf{D}^{-\frac{1}{2}}$$
 Laplacian $\mathbf{L}_{\mathrm{sym}} \mathbf{x}[u] = \sum_{v \in \mathcal{N}(u)} \frac{\mathbf{x}[u] - \mathbf{x}[v]}{\sqrt{d_u d_v}}$ Multiplying a node signal $x \in \mathbb{R}^d$ by the Laplacian

Intuition: This Laplacian operator measures how much a signal differs between a node and its immediate neighborhood

• Fact 2: The (generalized) eigenfunctions of the Laplace operator on Euclidean space are the Fourier modes (i.e., sinusoidal plane waves)

$$\mathbf{L}_{\mathrm{sym}} = \mathbf{U} \Lambda \mathbf{U}^{ op}$$

• Fourier analysis in Euclidean space involves projecting an input signal onto the eigenbasis of the Laplace operator

• **Key idea:** Define the graph Fourier transform (GFT) by representing a signal in the eigenbasis of the graph Laplacian:

Graph Fourier transform (GFT) of a signal $x \in \mathbb{R}^{|V|}$ on the nodes of graph

$$\hat{\mathbf{x}} = GFT(\mathbf{x}) = \mathbf{U}^{\mathsf{T}}\mathbf{x}$$
$$\mathbf{x} = GFT^{-1}(\hat{\mathbf{x}}) = \mathbf{U}\hat{\mathbf{x}}$$

where
$$\mathbf{L}_{\mathrm{sym}} = \mathbf{U}\Lambda\mathbf{U}^{\top}$$

Inverse graph Fourier transform

Key interpretation:

Laplacian eigenvectors = Fourier basis Laplacian eigenvalues = Frequencies

• **Key idea:** Define the graph Fourier transform (GFT) by representing a signal in the eigenbasis of the graph Laplacian:

Graph Fourier transform (GFT)

Multiplication by the inverse Laplacian eigenvectors

$$\hat{\mathbf{x}} = GFT(\mathbf{x}) = \mathbf{U}^{\mathsf{T}}\mathbf{x}$$
 $\mathbf{x} = GFT^{-1}(\hat{\mathbf{x}}) = \mathbf{U}\hat{\mathbf{x}}$

where
$$\mathbf{L}_{\mathrm{sym}} = \mathbf{U}\Lambda\mathbf{U}^{\top}$$

Inverse graph Fourier transform

• A graph convolution can then be defined by element-wise multiplication in the graph Fourier domain:

Convolution of a signal
$$x \in \mathbb{R}^{|V|}$$
 by a filter $\mathbf{f} \in \mathbb{R}^{|V|}$

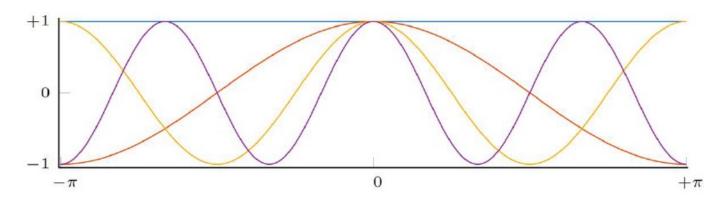
$$\mathbf{x} \star_{\mathcal{G}} \mathbf{f} = \mathbf{U} \left(\mathbf{U}^{\top} \mathbf{x} \circ \mathbf{U}^{\top} \mathbf{f} \right)$$

$$= \mathbf{U} \left(\hat{\mathbf{x}} \times \operatorname{diag}(\hat{\mathbf{f}}) \right)$$

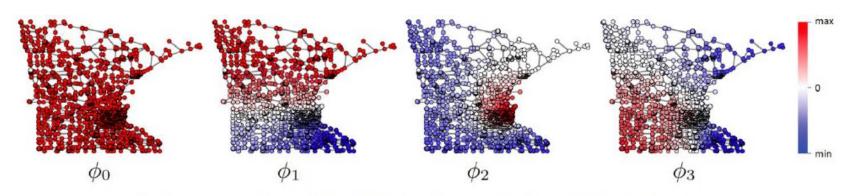
Element-wise multiplication between GFT of the signal and a filter

Representation of a filter as a diagonal matrix of frequencies

Graph Fourier analysis: Examples



First eigenvectors of ring graph Laplacian = classical Fourier basis



First eigenvectors of the Minnesota road network Laplacian

Connecting Spectral Convolutions and GNNs

 In practice, we can define graph convolutions as multiplications by polynomials of the (normalized) adjacency matrix, since

$$p(\mathbf{A}_{\mathrm{sym}}) = \mathbf{U}p'(\Lambda)\mathbf{U}^{-1}$$

where
$$\mathbf{L}_{\mathrm{sym}} = \mathbf{U}\Lambda\mathbf{U}^{-1}$$

Any polynomial of the adjacency matrix can be simultaneously diagonalized (i.e., share the same eigenvectors) with the Laplacian

Connecting Spectral Convolutions and GNNs

 In practice, we can define graph convolutions as multiplications by polynomials of the (normalized) adjacency matrix, since

$$p(\mathbf{A}_{\mathrm{sym}}) = \mathbf{U}p'(\Lambda)\mathbf{U}^{-1}$$
 where $\mathbf{L}_{\mathrm{sym}} = \mathbf{U}\Lambda\mathbf{U}^{-1}$
 $\Rightarrow p(\mathbf{A}_{\mathrm{sym}})\mathbf{x} = \mathbf{U}p'(\Lambda)\mathbf{U}^{-1}\mathbf{x}$

Multiplying a signal by a polynomial of the adjacency matrix is equivalent to multiplying the graph Fourier transform of that signal by a diagonal matrix (i.e. performing an elementwise multiplication) and then performing an inverse graph Fourier transform

Connecting Spectral Convolutions and GNNs

 In practice, we can define graph convolutions as multiplications by polynomials of the (normalized) adjacency matrix, since

$$p(\mathbf{A}_{\mathrm{sym}}) = \mathbf{U}p'(\Lambda)\mathbf{U}^{-1}$$
 where $\mathbf{L}_{\mathrm{sym}} = \mathbf{U}\Lambda\mathbf{U}^{-1}$
 $\Rightarrow p(\mathbf{A}_{\mathrm{sym}})\mathbf{x} = \mathbf{U}p'(\Lambda)\mathbf{U}^{-1}\mathbf{x}$

Multiplying by a polynomial of the adjacency matrix $p(\mathbf{A}_{\mathrm{sym}})\mathbf{x}$ gives a valid graph convolution $\mathbf{x}\star_{\mathcal{G}}\mathbf{f}=\mathbf{U}\left(\hat{\mathbf{x}}\times\mathrm{diag}(\hat{\mathbf{f}})\right)$

$\mathbf{h}_{u}^{(k)} = \mathbf{\nabla} \left(\mathbf{W}_{\text{self}}^{(k)} \mathbf{h}_{u}^{(k-1)} + \mathbf{W}_{\text{neigh}}^{(k)} \right)$ $\mathbf{k}^{\text{th layer}} = \mathbf{\nabla} \left(\mathbf{W}_{\text{self}}^{(k)} \mathbf{h}_{u}^{(k-1)} + \mathbf{W}_{\text{neigh}}^{(k)} \right)$

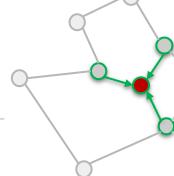
 $\left(\sum_{v \in \mathcal{N}(u)} \mathbf{h}_v^{(k-1)} + \mathbf{b}^{(k)}\right)$

kth layer embedding of *v*

non-linearity (e.g., ReLU) previous layer embedding of *u*

sum of neighbor's previous layer embeddings

$$\mathbf{h}_u^{(k+1)} = \sigma(\mathbf{W} \mathbf{h}_u^{(k)} + \mathbf{W} \mathbf{m}_{\mathcal{N}(u)})$$



Spectra Conv

$$\mathbf{H}^{(k+1)} = \sigma(\mathbf{(A+I)}\mathbf{H}^{(k)}\mathbf{W}^{(k)})$$

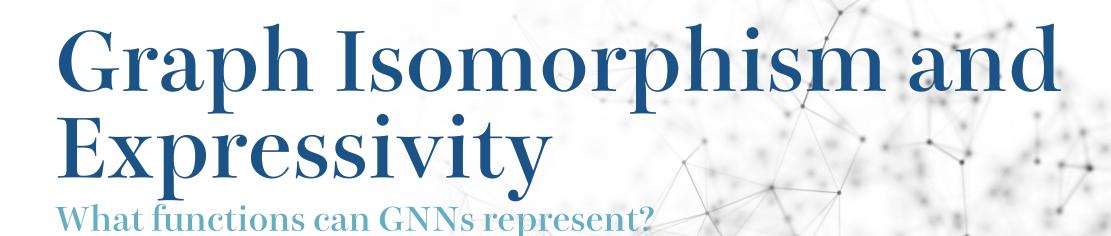
$$=\sigma(\mathbf{ ilde{A}}\mathbf{H}^{(k)}\mathbf{W}^{(k)})$$

Graph signal to convolve: node embeddings

Degree 1 polynomial filter $p(\mathbf{A}_{\text{SYM}})$: 1-hop

Summary of Convolutional View

- GNNs can be derived as a generalization of convolutions to the graph domain, based on graph Fourier analysis
- Multiplying by a polynomial of the adjacency matrix gives a valid graph convolution
- We can do convolutions also in the spectral domain, instead of the graph domain, however without "tricks" it is too expensive
- Both graph domain and spectral domain filtering is an active area of research

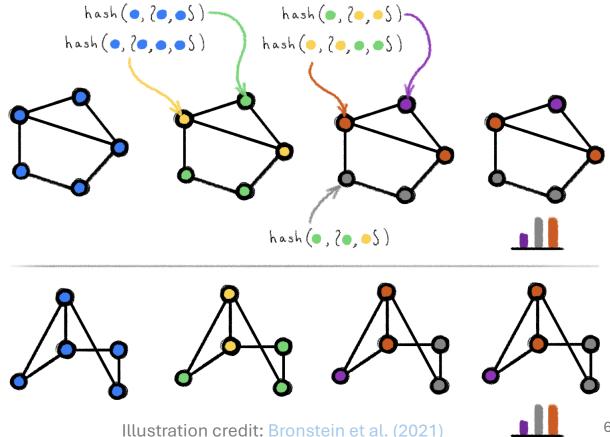


Weisfeiler-Lehman algorithm

 The WL algorithm is used to extract a discrete feature vector for a graph, which can be used to test if two graphs are isomorphic

WL Algorithm

- Initialize each node by the same color.
- For *t*=1..*T*:
 - For each node:
 - New label ← **hash** (multiset of labels in local neighborhood)
- Represent graph has multiset of labels obtained after T iterations



Weisfeiler-Lehman and GNNs

 GNNs can be viewed as a continuous and differentiable version of the WL test!

WL Coloring Algorithm

- Initialize each node with a discrete label
- For each node:
 - New label ←
 hash(multiset of labels in local neighborhood)

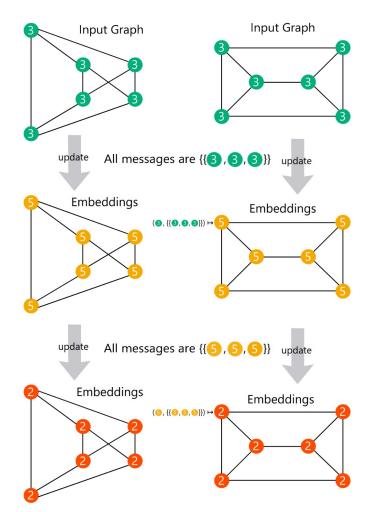
GNN Message Passing

- Initialize each node with a continuous embedding
- For each node:

1-WL Isomorphism Test & Limitations

- Graph isomorphism is hard!
- 1-WL test fails to distinguish some pairs of non-isomorphic graphs (e.g, regular graphs)
- A vanilla message-passing GNN also cannot distinguish such graphs!





1-WL Limitations

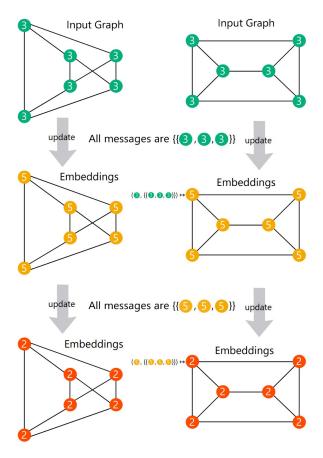


Figure 4: Message passing GNNs cannot distinguish any pair of regular graphs with the same degree and size even if they are not isomorphic.

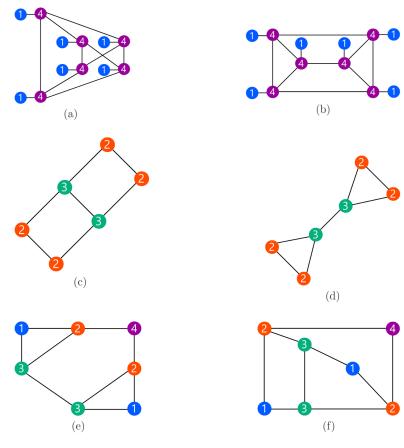


Figure 5: Although these graphs are not isomorphic or regular, GNNs cannot distinguish (a) from (b), (c) from (d), and (e) from (f)

How to Enhance Expressivity?

- Most standard GNNs limited by 1-WL graph isomorphism test
- Ways to improve GNN expressivity:
 - Add features: Easiest way -- even random features breaks symmetries & distinguish/count local structures
 - Positional/structural encodings! More on that later...
 - Modulate message-passing: E.g. anisotropic message aggregation like GAT/attention
 - Modify underlying graph: k-GNNs, graph transformers, expander graphs, graph rewiring strategies

More Resources

- Distill: Intro to GNNs, Convolutions on graphs.
 - Excellent introductory material with interactive visualizations
- PyG Docs: Colab notebooks & video tutorials
 - More content available in the <u>main documentation directory</u>
- ICML 2024 Graph Learning Tutorial
 - Similar introductory content, but (a) less applications & no coding content, but (b) goes deeper into specific challenges in graph learning
- William L. Hamilton's GRL book, GRL keynote talk
- Geometric Deep Learning Course: Book, Keynote, Lectures

Live coding: Building GNNs with PyG

[Link]

Part II: Outline

Caveats of Message Passing Neural Networks

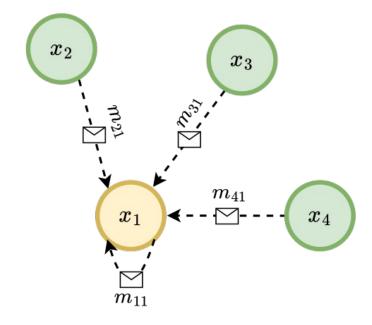
- Under-reaching
- Over-smoothing
- Over-squashing

Solutions

- Rewiring
- Advanced GNNs
- Graph Transformers

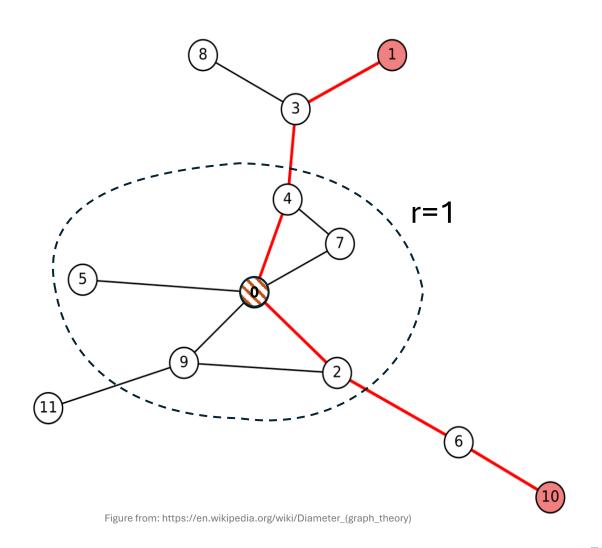
Message Passing Neural Networks (MPNN)

- Features at each node x_i , maybe also each edge $e_{i o j}$
- Message from node j to node i: $m_{j \to i} = f_e(x_j, x_i, e_{j \to i})$
- New features $x_i^+ = f_v(x_i, \sum_j m_{j \to i})$ for some NN f_v



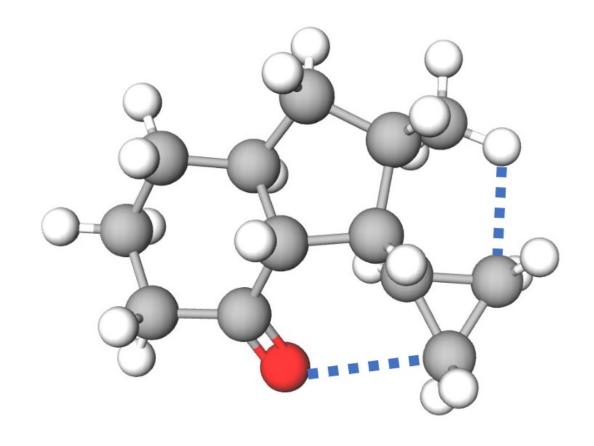
Some Parameters

- 1. Graph Diameter (d)
- 2. Problem Radius ($r \leq d$)
 - Local dependencies
 - Long range dependencies
- 3. Reach capacity of GNN (k)
 - Number of layers in MPNNs



d=6

Underreaching



Long-range 3D atomic contact not captured by the structure [Dwivedi et al., 2022]

Under-reaching

Problem

 Nodes can only access information within k hops (limited receptive field).

• Information cannot propagate beyond k GNN layers.

• If k < r (where r = problem radius), the model under-reaches.

Implications

• Long-range dependencies are missed.

r often grows with graph size → required k scales with graph.

Solution

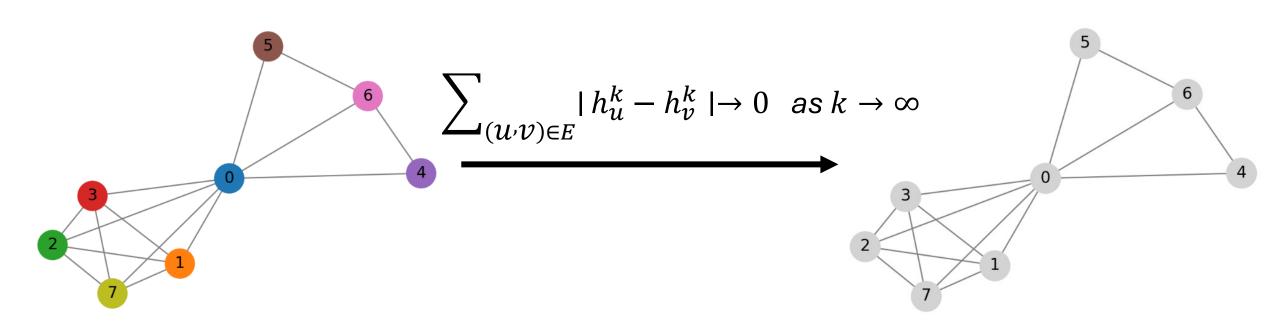
 Stack more layers (k > r) to enable information exchange across distant nodes.

Spoiler alert: there are some consequences

Distance = 11

Over-smoothing

With many stacked layers, node embeddings become indistinguishable.



Over-smoothing in GNNs

Problem

 Stacking many GNN layers → node embeddings become indistinguishable

Cause

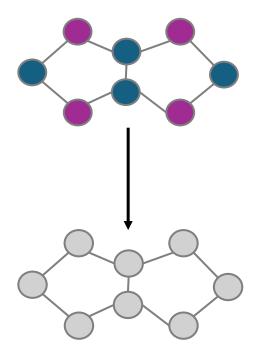
- Too much mixing of information
- Depends on:
 - Graph connectivity (G)
 - GNN architecture

Key properties

- Independent of problem radius (not about k < r)
- Leads to convergence of embeddings across all nodes

Takeaway

More layers ≠ more expressive → risk of over-smoothing



$$\sum_{(u,v)\in E} |h_u^k - h_v^k| o 0$$
 as $k o \infty$

Figure and equation from: ICML 2024 tutorial on Graph Learning

Some over-smoothing solutions

Architectural techniques

- Residual / skip connections → preserve raw node features across layers
- Normalization layers (BatchNorm, GraphNorm, PairNorm) & Regularization → stabilize training
- Jumping knowledge networks → adaptively combine representations from different layers

Alternative designs

- Attention mechanisms → selective information propagation
- Hybrid Graph Filters → Low pass filters cause oversmoothing, combine them with band-pass filters (Graph Scattering)

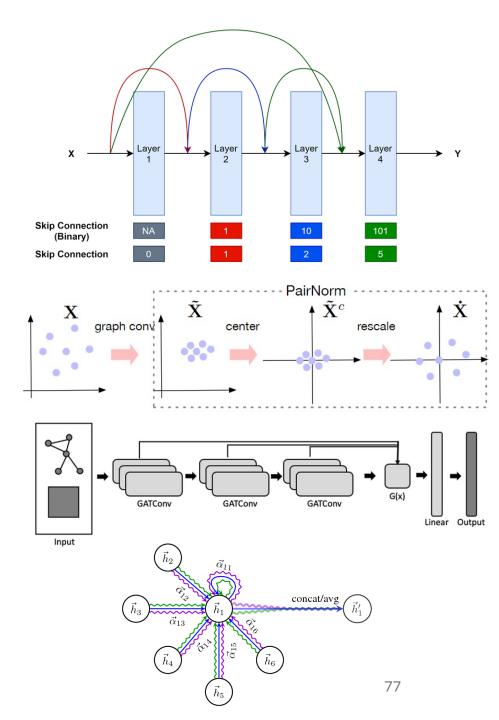
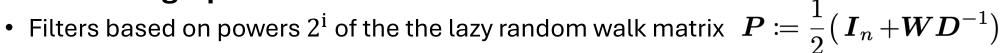


Figure sources: 1. Li, Yaoman, and Irwin King. "Autograph: Automated graph neural network." International conference on neural information processing. 2. Zhao, Lingxiao, and Leman Akoglu. "Pairnorm: Tackling oversmoothing in gnns. (ICLR 202)

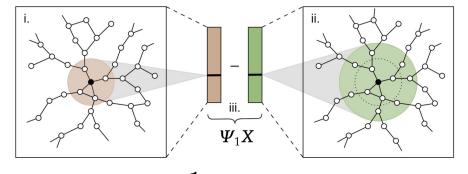
 $^{3.\} Eschenburg, et al.\ "Learning cortical parcellations using graph neural networks."\ Frontiers in neuroscience 15$

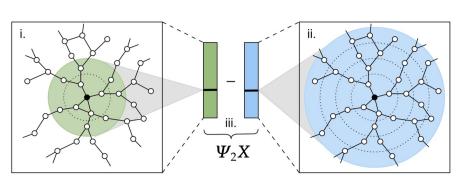
Geometric scattering

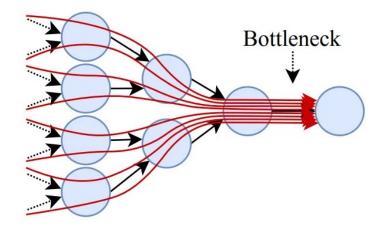
- Can we handle over-smoothing and under-reaching by better filter design?
- GCN filters: Low-pass filtering only
- GS based on graph diffusion wavelets:



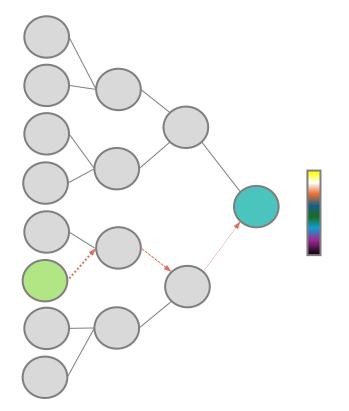
- Subtract these low-pass filters at different scales
- Capture information at different frequency bands $\; m{\Psi}_k \coloneqq m{P}^{2^{k-1}} m{P}^{2^k} \;$
- Larger receptive fields resolve under-reaching
- Band-pass filtering avoids over-smoothing
- Hybrid scattering combines both low- and band-pass filters







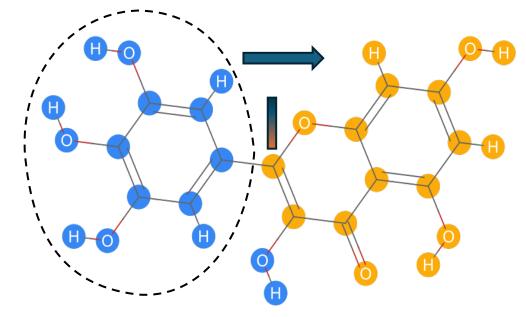
Over-squashing



Information bottlenecks appear in the message passing process

Number of nodes in the receptive field increases exponentially with the depth

Over-squashing



Problem

- Number of nodes in the receptive field grows exponentially with depth.
- Information from many distant nodes must be **compressed** into fixed-size node embeddings.
- Too much information needs to pass through a single node or a small number of nodes, causing **information bottlenecks**.

Effects

- Information from distant nodes is lost or distorted.
- Long-range dependencies fail.

Key takeaway

• Even with enough layers, bottlenecks limit effective information flow.

Solutions to over-squashing

Graph rewiring

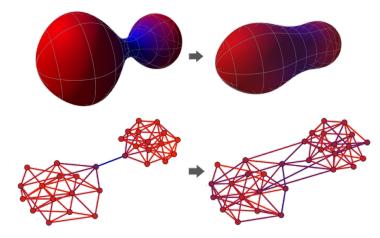
- Add edges/nodes to bypass bottlenecks (e.g., curvature-based, spectral, or diffusion-based rewiring).
- Improves connectivity and reduces path lengths.

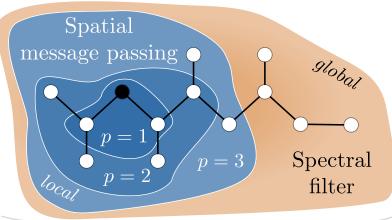
Model capacity

- Increase hidden dimension size
 → more room to encode distant information.
- Use attention to prioritize important signals.

Advanced Architectures

- Higher order GNNs.
- Combining with spectral methods.
- Graph Transformers ...





Graph rewiring

Idea

- Modify graph edges to improve message passing.
- Helps connect distant nodes, reduce bottlenecks, and highlight relevant interactions.

Types of Rewiring

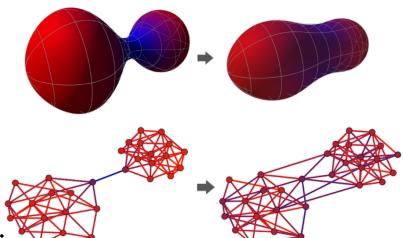
- **Spatial**: add edges locally (within *k*-hop).
- Spectral: add edges based on global connectivity measures.

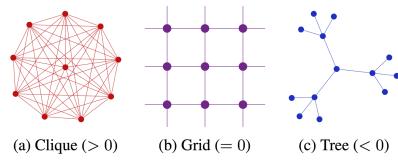
Static vs Dynamic

- Static: rewiring fixed before training.
- Dynamic: edges updated during training, adapt to task.

Benefit

 Mitigates over-squashing by improving long-range communication.

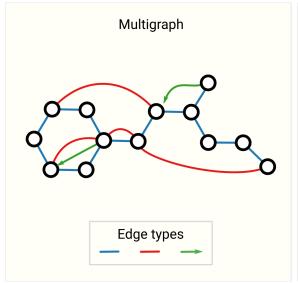


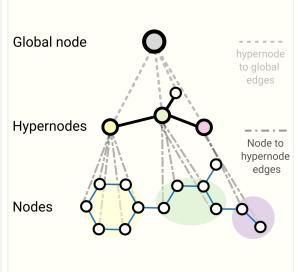


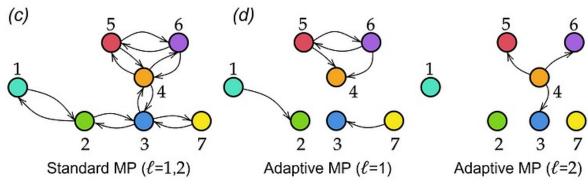
Advanced GNNs

- Higher order GNNs
- Hierarchical GNNs
- Adaptive Message Passing

• ...







Higher Order GNNs

Motivation

- Standard GNNs operate on pairs of nodes (edges).
- Higher-order GNNs extend message passing to k-tuples of nodes.
- Captures richer relational structures (motifs, subgraphs, hyperedges).

Examples

- 2-WL GNNs: work on pairs of nodes, more expressive than standard MPNNs.
- Subgraph GNNs: operate on induced subgraphs around nodes or edges.

Key advantage

- Higher expressive power → can distinguish graphs that standard GNNs cannot (e.g., certain regular graphs).
- Gives a **richer communication channel** that bypasses narrow single-edge bottlenecks.

Hierarchical GNNs

Motivation

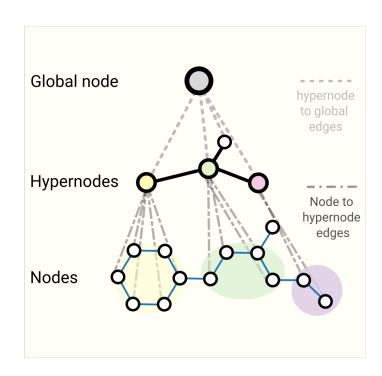
- Capture information at different levels of granularity
- From small neighborhoods → larger scale structures

Methods

- Graph clustering: group nodes into clusters
- Combine original nodes and cluster-level nodes
- Multi-level hierarchy possible (recursive clustering)

Advantages

- Long-distance nodes become closer in higher levels
- Improves efficiency and long-range information flow



Adaptive GNNs

Motivation

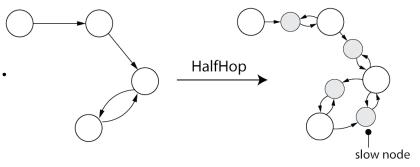
- Not all nodes need to send/receive messages in every round.
- Each node can act as sender, receiver, both, or nothing.

Methods

- Train an auxiliary GNN to decide when to pass messages.
- Introduce half-hop nodes for flexible communication.

Advantages

- Receptive fields grow adaptively and controllably.
- Enables deeper GNNs while limiting unnecessary message passing.
- Focuses long-path communication only where needed.



Summary of challenges

Propagation limits

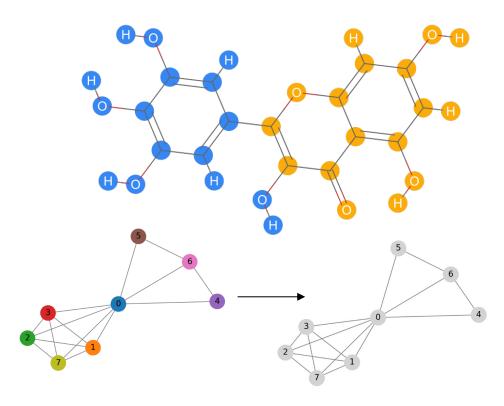
- Information flows only along graph edges → hard to capture long-range dependencies
- Solution: deeper GNNs (more layers)

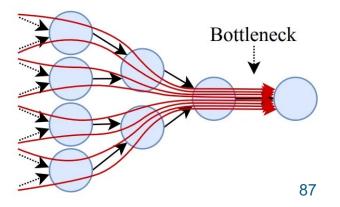
Over-smoothing

- Too many layers → node features become indistinguishable
- **Solutions**: residual/skip connections, normalization, jumping knowledge, alternative designs

Over-squashing

- Graph bottlenecks restrict information flow
- Large receptive fields → information over-compressed into embeddings
- **Solutions**: graph rewiring, larger hidden dimensions, advanced architectures (e.g., higher-order, attention-based)

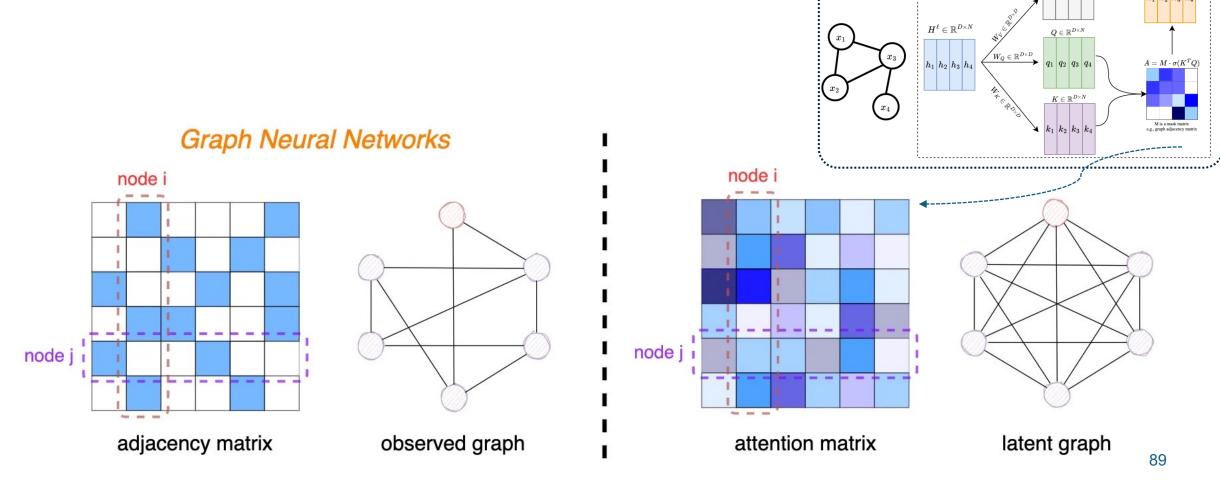




Graph Transformers

Decoupling graph structure from the computation graph

Self-Attention Layer



Transformers

 LLM era: Next token prediction based on a past context window

position

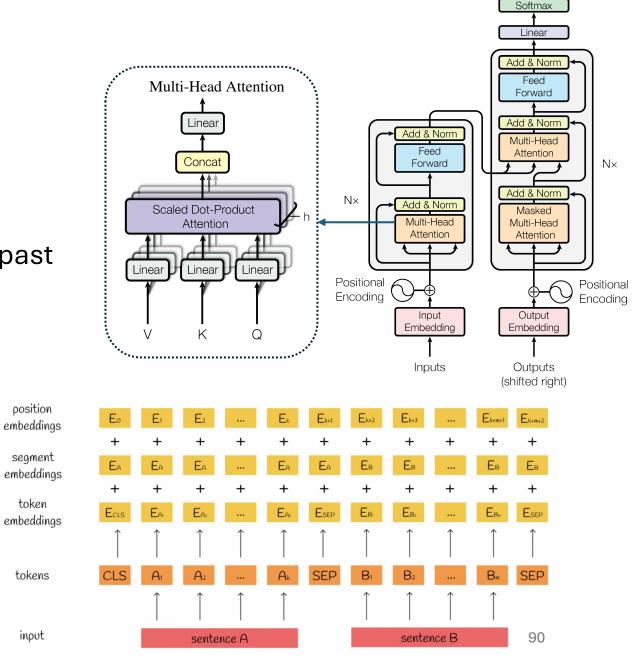
segment

token

tokens

input

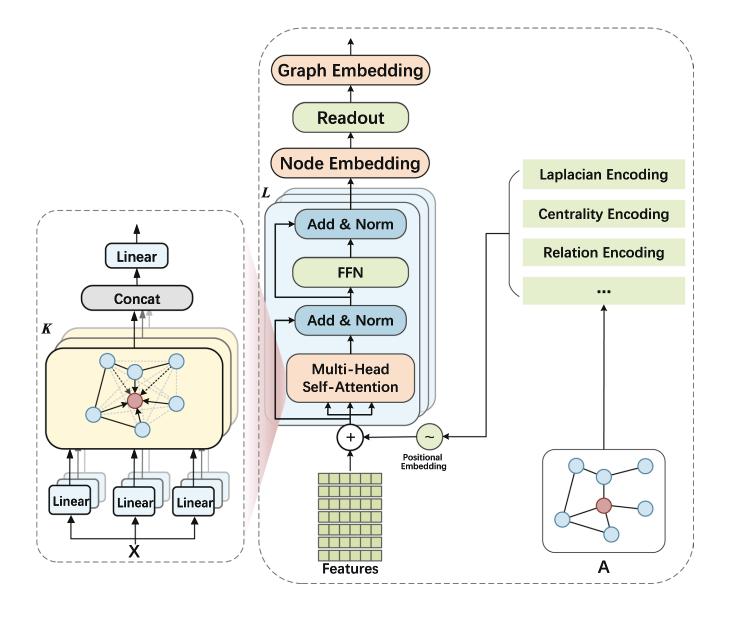
- Key element: "Attention is All You Need!"
- All pair attention mechanism!
- Sequence of words: aka line graph
- Dense attention



Output **Probabilities**

Graph Transformers

- Similar Attention mechanism
- Tokens:
 - Nodes
 - Edges
 - Subgraphs
 - ...



Message Passing vs. Graph Transformers

Message Passing

Updates across edges of input graph

- ✓ Captures inductive bias from input graph topology
- \bigvee Efficient computation: $\mathcal{O}(nd^2 + md)$
- ➤ Difficulty with long-range dependencies
- X Oversmoothing, oversquashing

Graph Transformers

Use global attention

- ✓ All-pair attention, no information bottleneck
- ✓ Long-range modelling
- X Loss of inductive bias from graph
- \times Inefficient computation: $\mathcal{O}(nd^2 + n^2d)$
 - Usually in graphs $m \ll n^2$

Message Passing vs. Graph Transformers

Message Passing

Updates across edges of input graph

- ✓ Captures inductive bias from input graph topology
- \bigvee Efficient computation: $\mathcal{O}(nd^2 + md)$
- X Difficulty with long-range dependencies
- X Oversmoothing, oversquashing

Graph Transformers

Use global attention

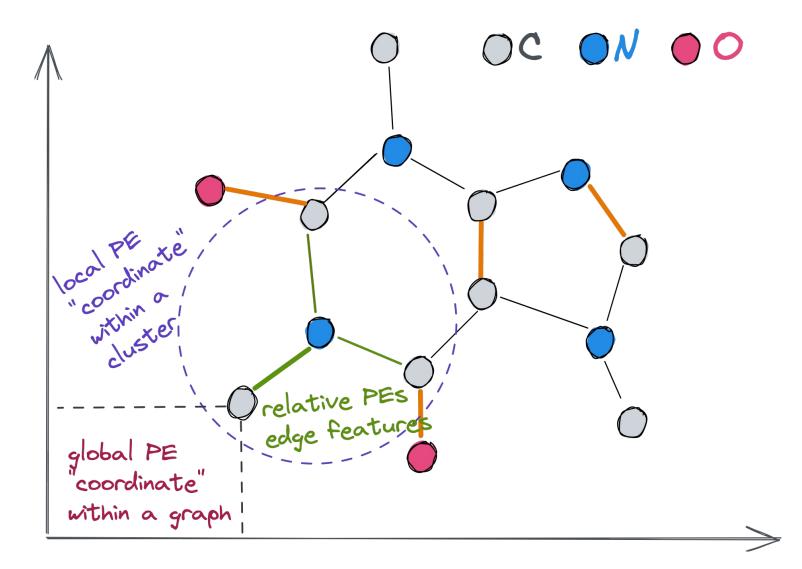
✓ All-pair attention, no information

bottleneck

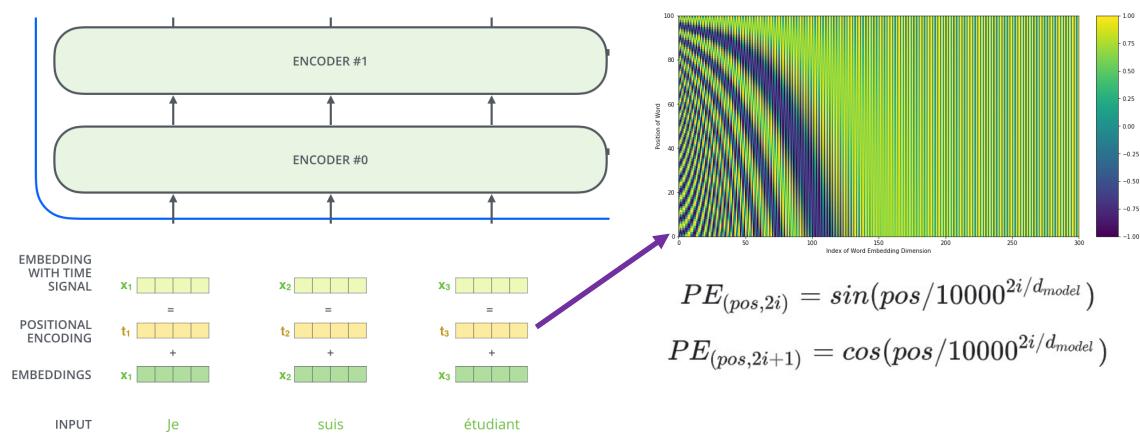
Positional and structural encodings

- **✓** Long-range modelling
- X Loss of inductive bias from graph
- \times Inefficient computation: $\mathcal{O}(nd^2 + n^2d)$
 - Usually in graphs $m \ll n^2$

Positional/ Structural Encodings



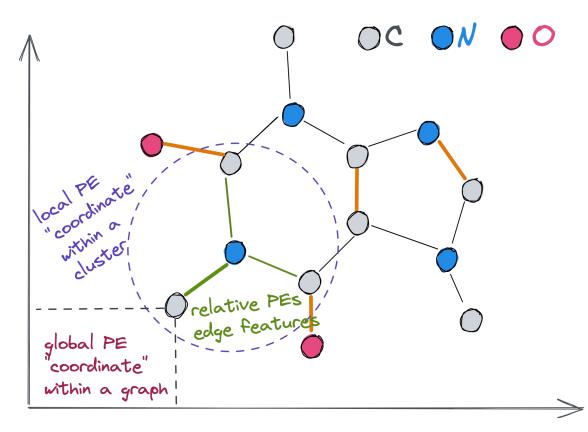
Positional Encodings (PE) for Sequences



PEs borrowed from NLP, where they denote the position of each word, making the embeddings of closer-by words more similar

Graph Positional and Structural Encodings

- Can provably improve expressive power of GNNs
- Organized into 3 categories based on their locality:
 - Local
 - Global
 - Relative



Laplacian Eigenvectors and Eigenvalues

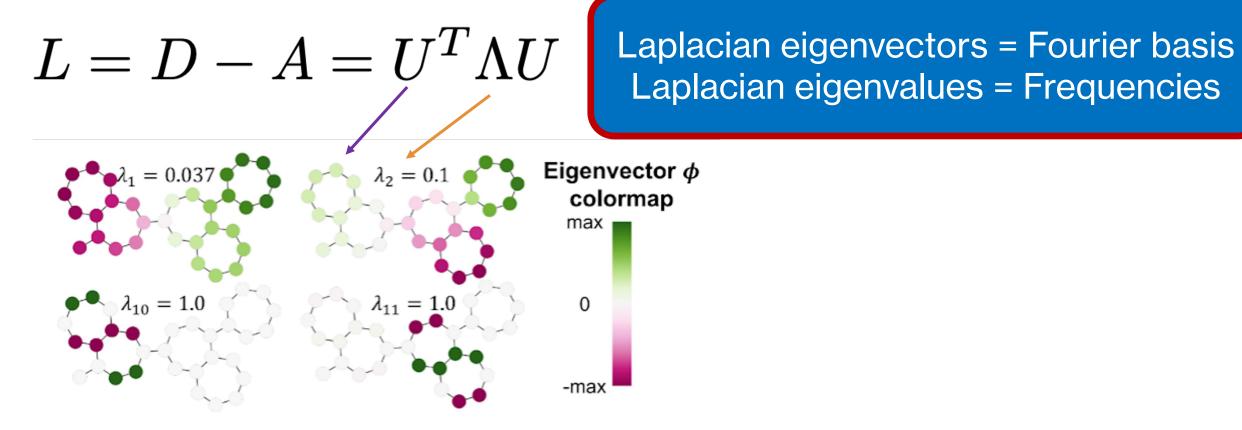
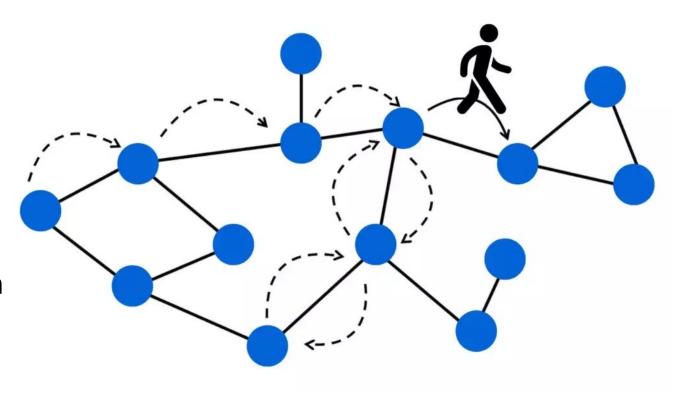


illustration: Kreuzer et al. Rethinking Graph Transformers with Spectral Attention, 2021 Belkin and Niyogi. Laplacian eigenmaps for dimensionality reduction and data representation, 2003

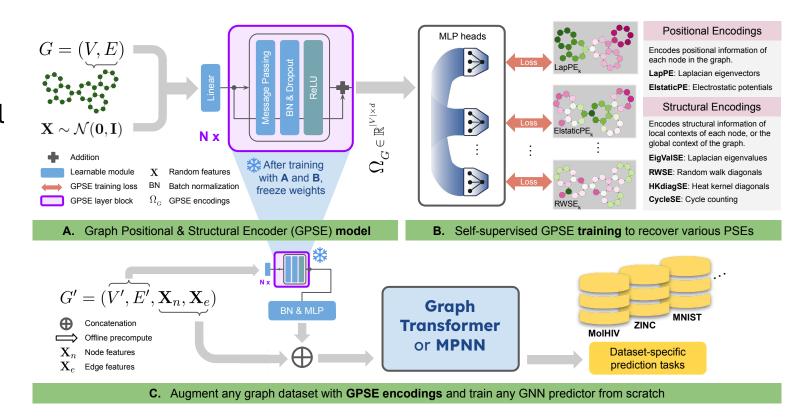
Many more: RWSE, HKSE, ElectrostaticSE

- **RWSE:** Random walk landing probabilities after steps: Diagonal of RW matrix
- **HKSE:** Represents a Gaussian in Euclidean space, solves the diffusion equation
- **ElstaticSE:** Kernel based on the electrostatic interaction between nodes



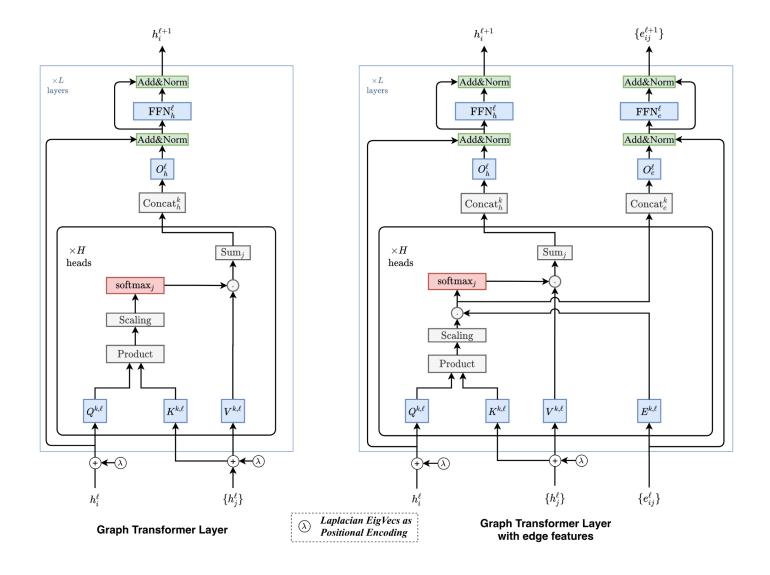
GPSE

- Graph Positional and Structural Encoder (GPSE, Cantürk et al., 2024): A self-supervised learning of various positional encodings.
- An MPNN leans to generate the positional encodings from Gaussian initializations



Graph Transformers

 The first design by Dwivedi and Bresson, 2021



Graphormer

At the time SoTA:

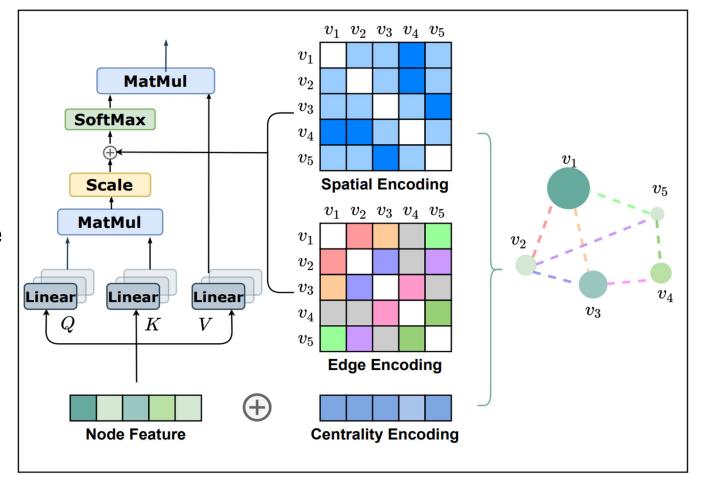
- OGB-LSC graph property
- Open Catalyst NeurIPS'21 Challenge

Positional Encodings used:

Node centrality

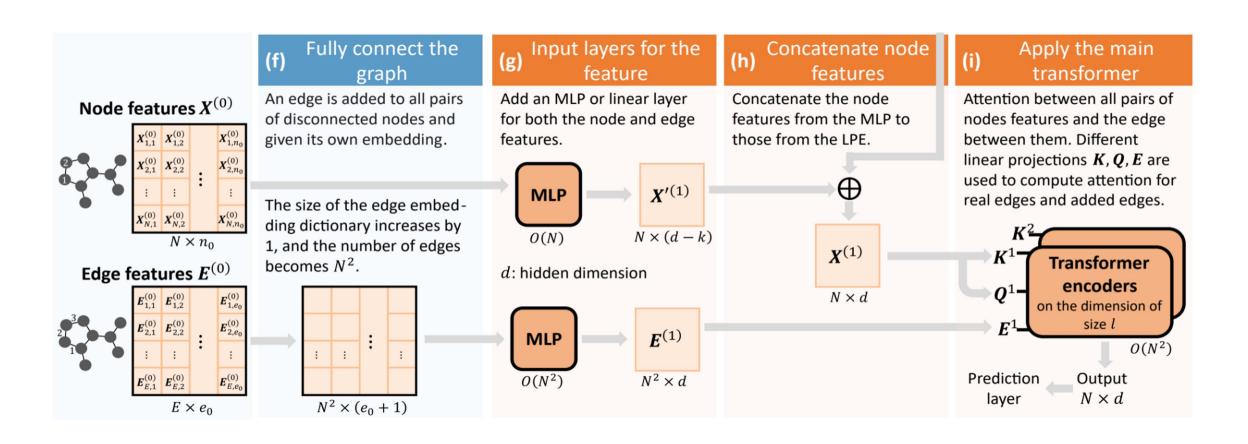
$$h_i^{(0)} = x_i + z_{\deg^-(v_i)}^- + z_{\deg^+(v_i)}^+$$

- Spatial encoding: shortest paths distances-
- Edge encoding enc. edges on a shortest path



$$A_{ij} = \frac{(h_i W_Q)(h_j W_K)^T}{\sqrt{d}} + b_{\phi(v_i, v_j)} + c_{ij}, \text{ where } c_{ij} = \frac{1}{N} \sum_{n=1}^{N} x_{e_n} (w_n^E)^T$$

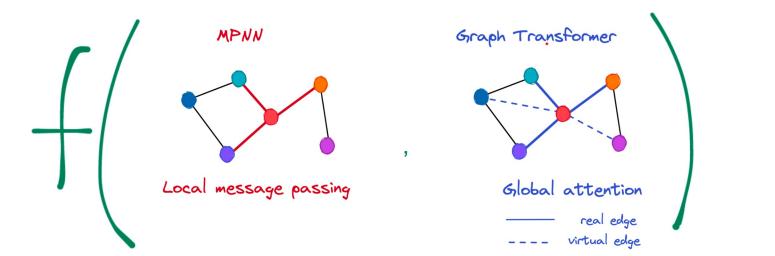
Spectral Attention Network



GraphGPS

1. Positional and Structural Features

2. GPS layer: Combine MPNN and Transformer (Global Attention)



Message Passing vs. Graph Transformers

Message Passing

Updates across edges of input graph

- Captures inductive bias from input graph topology
- \bigvee Efficient computation: $\mathcal{O}(nd^2 + md)$
- X Difficulty with long-range dependencies
- X Oversmoothing, oversquashing

Graph Transformers

Use global attention

- ✓ All-pair attention, no information bottleneck
- ✓ Long-range modelling
- X Loss of inductive bias from graph
- \times Inefficient computation: $\mathcal{O}(nd^2 + n^2d)$
 - Usually in graphs $m \ll n^2$

Message Passing vs. Graph Transformers

Message Passing

Updates across edges of input graph

- Captures inductive bias from input graph topology
- \bigvee Efficient computation: $\mathcal{O}(nd^2 + md)$
- X Difficulty with long-range dependencies
- X Oversmoothing, oversquashing

Graph Transformers

Use global attention

- ✓ All-pair attention, no information bottleneck
- **✓** Long-range modelling
- X Loss of inductive bias from graph
- \times Inefficient computation: $\mathcal{O}(nd^2 + n^2d)$
 - Usually in graphs $m \ll n^2$

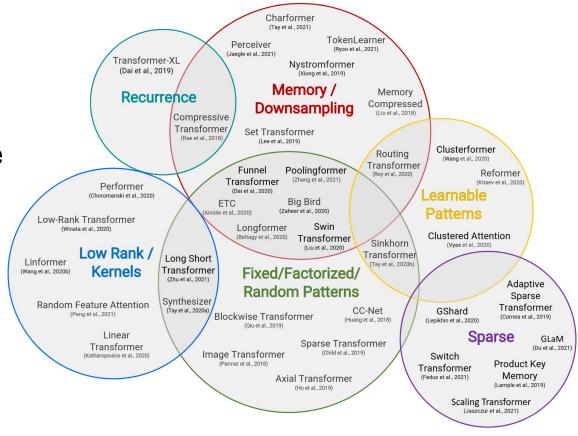
Efficient

Transformers

Efficient Graph Transformers Sparse Transformers / Linear Transformers / Sampling

Scaling

- Dense attention → efficient attention
 - Sparse attention
 - Low-rank attention
 - Sampling based
 - Different design
- Many efficient attention mechanisms proposed for sequence transformers



Y. Tay, M. Dehghani, D. Bahri, and D. Metzler. Efficient Transformers: A Survey. ACM Computing Survey, volume 55. 2022

Efficient Transformers for *Graphs*

Sparse patterns

 Exphormer (Shirzad et al., 2023) → efficient sparse attention pattern

Low-rank / efficient attention

- Nodeformer (Wu et al., 2023) → low-rank attention using kernelized Gumbel-Softmax. Inspired by Performer (Choromanski et al., 2021)
- Difformer → diffusion-based attention
- **Polynormer** → polynomial + linear attention

Sampling-based

- **Gophormer** (Zhao et al., 2021) → neighbor sampling strategy
- Spexphormer (Shirzad et al., 2024) → Importance Sampling + Exphormer

Alternative designs

- NAGphormer (Chen et al., 2022) → k-hop neighborhood summary
- And many more...

Sparse attention pattern → reduces computation

Linear complexity with respect to the graph size

Virtual nodes → shrink graph diameter, enable long-range communication

Expander graphs → prevent over-squashing by improving information flow

Nodeformer

Why Attention is Quadratic

$$Att(Q, K, V) = softmax \left(\frac{QK^{\top}}{\sqrt{d_k}}\right)V$$

 $Q, K, V \in \mathbb{R}^{n \times d}$, where n= number of nodes/tokens. Computing QK^{T} gives an $n \times n$ matrix $\Rightarrow \mathcal{O}(n^2d)$.

Linear Attention

$$\operatorname{Att}(Q, K, V) \approx \phi(Q)(\phi(K)^{\mathsf{T}}V)$$

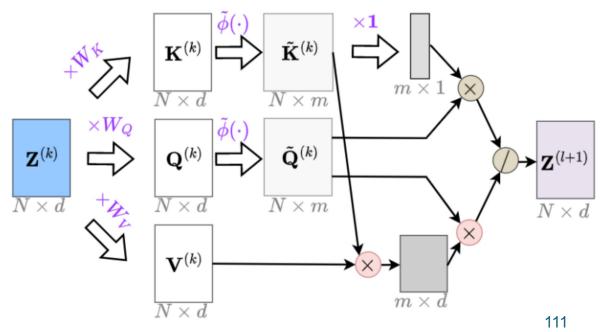
Replace softmax with kernel feature map $\phi(\cdot)$.

Avoids explicit $n \times n$ matrix.

Complexity: $O(nd^2) \rightarrow \text{linear in } n$.

The global attention layer of NodeFormer

$$egin{aligned} \mathbf{Q}^{(k)} &= \mathbf{W}_Q \mathbf{Z}^{(k)}, \ \mathbf{K}^{(k)} &= \mathbf{W}_K \mathbf{Z}^{(k)}, \ \mathbf{V}^{(k)} &= \mathbf{W}_V \mathbf{Z}^{(k)} \end{aligned}$$
 $egin{aligned} & ilde{\mathbf{Q}}^{(k)} &= \phi(\mathbf{Q}^{(k)}), \ ilde{\mathbf{K}}^{(k)} &= \phi(\mathbf{K}^{(k)}) \end{aligned}$
 $\mathbf{D}^{(k)} &= \mathrm{diag}^{-1} \left(ilde{\mathbf{Q}}^{(k)} \left((ilde{\mathbf{K}}^{(k)})^{ op} \mathbf{1}
ight)
ight)$
 $\mathbf{Z}^{(k+1)} &= \mathbf{D}^{(k)} \left[ilde{\mathbf{Q}}^{(k)} \left((ilde{\mathbf{K}}^{(k)})^{ op} \mathbf{V}^{(k)}
ight)
ight]$

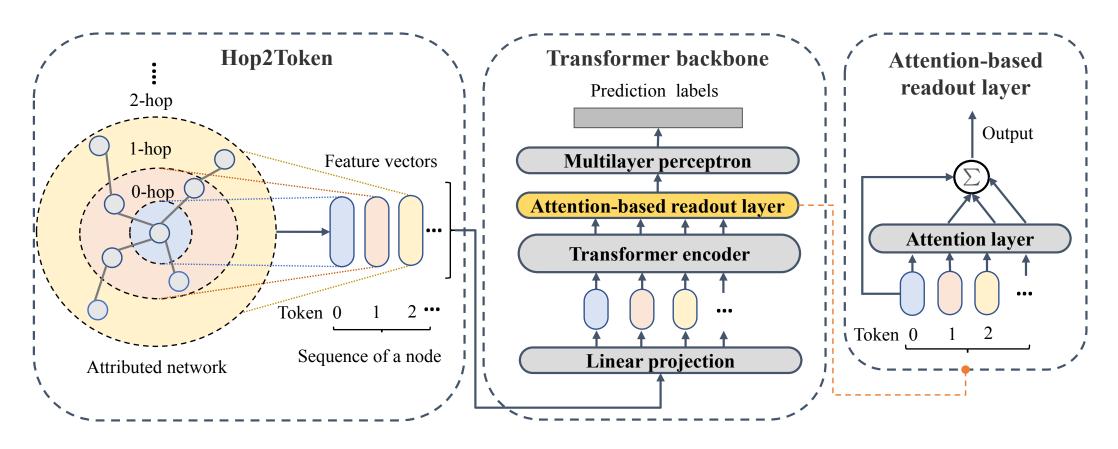


NAGphormer

Hop-to-token: convert *k-hop neighborhoods* into tokens.

Summarization: aggregate all nodes within distance k into a single embedding.

Attention: model interactions between different hop-level embeddings.



Message Passing vs. Graph Transformers

Message Passing

Updates across edges of input graph

- ✓ Captures inductive bias from input graph topology
- \bigvee Efficient computation: $\mathcal{O}(nd^2 + md)$
- X Difficulty with long-range dependencies
- X Oversmoothing, oversquashing

Graph Transformers

Use global attention

- All-pair attention, no information bottleneck
- ✓ Long-range modelling
- X Loss of inductive bias from graph
- \times Inefficient computation: $\mathcal{O}(nd^2 + n^2d)$
 - Usually in graphs $m \ll n^2$

Message Passing vs. Graph Transformers

Message Passing

Updates across edges of input graph

- ✓ Captures inductive bias from input graph topology
- \bigvee Efficient computation: $\mathcal{O}(nd^2 + md)$
- X Difficulty with long-range dependencies
- X Oversmoothing, oversquashing

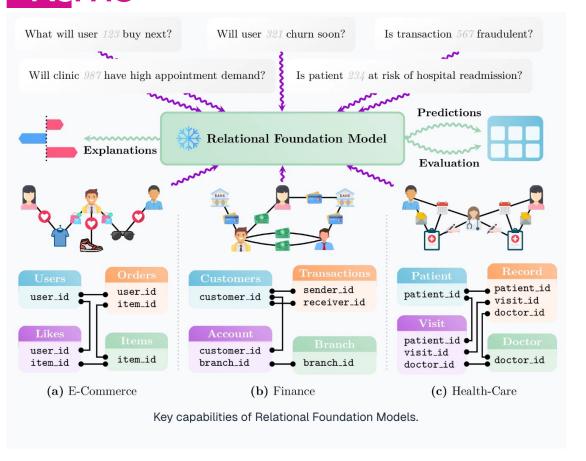
Graph Transformers

Use global attention

- ✓ All-pair attention, no information bottleneck
- ✓ Long-range modelling
- X Loss of inductive bias from graph
- \times Inefficient computation: $O(nd^2 + n^2d)$
 - Usually in graphs $m \ll n^2$

Graph Transformers in Industry

- KumoRFM: A Large Relational Foundation Model
- For large scale tabular graphs
- Generalizable for many different tasks



Summary

Revolution

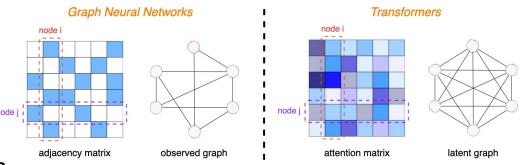
- Bring the success of Transformers to graph learning
- Decoupling **graph structure** from the computation grapn

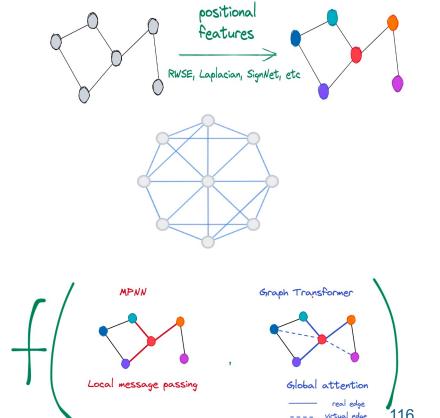
Challenges

- Loss of inductive bias
 - Need positional and structural encodings
- Scalability issues
 - Graphs are large → require efficient Transformers
 - Explore alternative designs
- Hybrid Approaches
 - Combine GNN message passing with Transformer attention

Industry Impact

Deployed in large-scale systems (e.g., KumoRFM)





More Resources

- Kumo Al: Graph Transformers blog post
 - Excellent introductory material with interactive visualizations
- Google Research: Blog post on Exphormer model
- ICML 2024 Graph Learning Tutorial
 - Similar introductory content, but (a) less applications & no coding content, but (b) goes deeper into specific challenges in graph learning
- William L. Hamilton's GRL book, GRL keynote talk
- Geometric Deep Learning Course: Book, Keynote, Lectures

Live coding:
Building
Graph
Transformers

[Link]

Part III: Outline

- 1. Translational and Rotational Symmetries
- 2. Geometric Generative Modeling
 - 1. Background
 - 2. Graph Generation
 - 3. Protein Design Problem

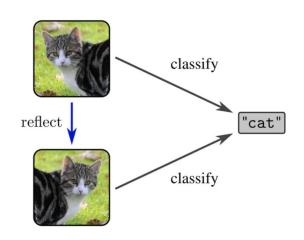
Roto-Translational Symmetries Invariance & Equivariance over SO(3)/SE(3)

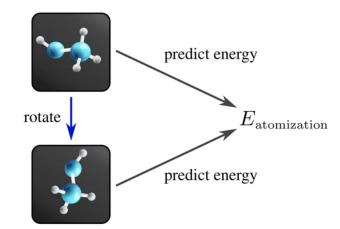
Data invariance & equivariance

Invariance

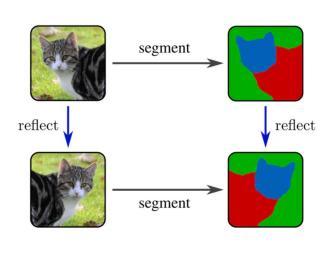
Computer Vision

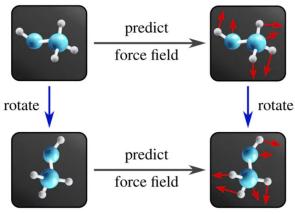
Graph Learning





Equivariance





Data invariance & equivariance

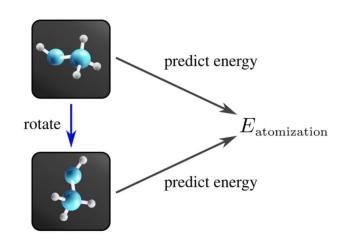
Invariance

Equivariance

Computer Vision

How to maintain invariance or equivariance with x-y-z coordinates as features?

Graph Learning





GNN equivariance w.r.t. specific transformations

- Equivariant models in some group of transformations (in addition to permutations)
 - rotations:
 SO(3), SO(2), ...
 - rotations + translations: SE(3)
 - rotations + translations + reflections:E(n)

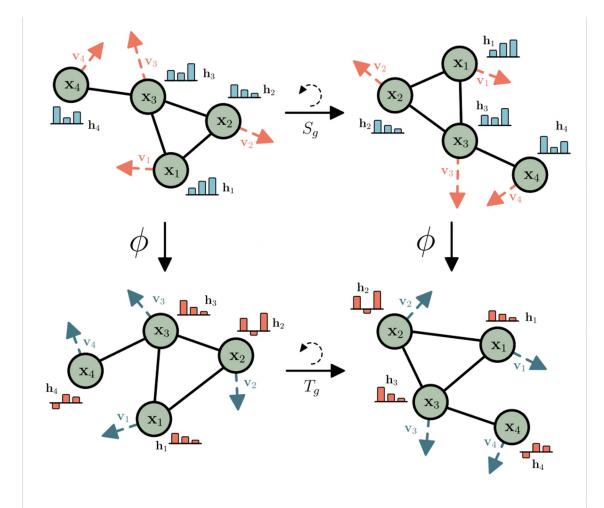


Figure 1. Example of rotation equivariance on a graph with a graph neural network ϕ

$$\phi(T_g(\mathbf{x})) = S_g(\phi(\mathbf{x}))$$

E(n) Equivariant GNN

Equivariant to:

rotations, translations,
 reflections and permutations

Applied to tasks such as:

- Simulation of N-body system dynamics
- In Quantum Chemistry (QM9)

GNN

$$m_{i,j} = \phi_e(h_i^l, h_j^l, a_{ij})$$

$$m_i = \sum_{j \in \mathcal{N}(i)} m_{i,j}$$

$$h_i^{l+1} = \phi_h(h_i^l, m_i)$$

E(n)-GNN

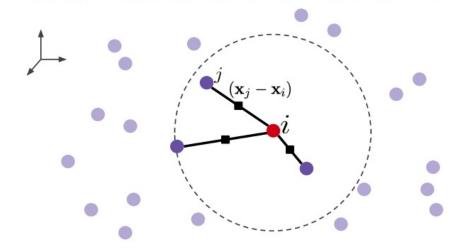
Relative Squared Position $m_{i,j} = \phi_e(h_i^l, h_i^l, \mid \mid x_i^l - x_i^l \mid \mid^2, a_{ij})$

$$x_i^{l+1} = x_i^l + C \sum_{j \neq i} (x_i^l - x_j^l) \phi_x(m_{i,j})$$

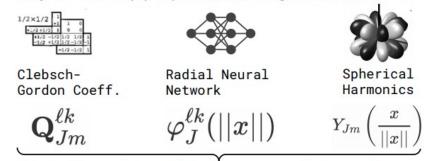
Position Update $m_i = \sum_{j \in \mathcal{N}(i)} m_{i,j}$

$$h_i^{l+1} = \phi_h(h_i^l, m_i)$$

Step 1: Get nearest neighbours and relative positions



Step 2: Get SO(3)-equivariant weight matrices



Matrix W consists of blocks mapping between degrees

$$\mathbf{W}(x) = \mathbf{W}\left(\left\{\mathbf{Q}_{Jm}^{\ell k},\,arphi_J^{\ell k}(||x||),\,Y_{Jm}\left(rac{x}{||x||}
ight)
ight\}_{J,m,\ell,k}
ight)$$

- **Spherical harmonics:** Orthonormal basis for rotations in SO(3). Functions that project 3-dimensional vectors into spherical tensors (equivariant)
- Radial NN: Uses RBFs to learn distance-based features (invariant)
- Clebsch-Gordon Coefficients: Physics-derived change-of-basis matrices to ensure invariant and equivariant weights

Step 2: Get SO(3)-equivariant weight matrices

Clebsch-Gordon Coeff. Radial Neural Network

Spherical Harmonics

$$\mathbf{Q}_{Jm}^{\ell k}$$

$$arphi_J^{\ell k}(||x||) \qquad {\scriptscriptstyle Y_{Jm}\left(rac{x}{||x||}
ight)}$$

$$Y_{Jm}\left(rac{x}{||x||}
ight)$$

Matrix W consists of blocks mapping between degrees

$$\mathbf{W}(x) = \mathbf{W}\left(\left\{\mathbf{Q}_{Jm}^{\ell k},\,arphi_{J}^{\ell k}(||x||),\,Y_{Jm}\left(rac{x}{||x||}
ight)
ight\}_{J,m,\ell,k}
ight)$$

$$\mathbf{W}^{\ell k}(\mathbf{x}) = \sum_{J=|\ell-k|}^{\ell+k} \varphi_J^{\ell k}(\|\mathbf{x}\|) \, \mathbf{W}_J^{\ell k}(\mathbf{x}),$$

where

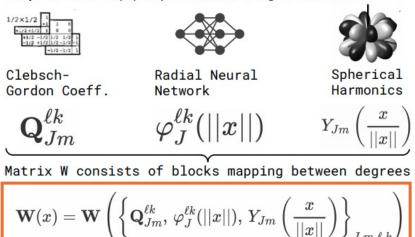
$$\mathbf{W}_{J}^{\ell k}(\mathbf{x}) = \sum_{m=-J}^{J} Y_{Jm} \left(\frac{\mathbf{x}}{\|\mathbf{x}\|} \right) \mathbf{Q}_{Jm}^{\ell k}.$$

The TFN layer output is

$$\mathbf{f}_{\mathrm{out},i}^{\ell} = \underbrace{w^{\ell\ell}\mathbf{f}_{\mathrm{in},i}^{\ell}}_{\mathrm{self-interaction}} + \sum_{k\geq 0} \sum_{j\neq i} \mathbf{W}^{\ell k}(\mathbf{x}_j - \mathbf{x}_i) \, \mathbf{f}_{\mathrm{in},j}^k.$$

Symbol	Meaning
$\mathbf{W}^{\ell k}(\mathbf{x})$	Kernel mapping between input type k and output type ℓ
J	Index of equivariant basis kernel (runs from $ \ell - k $ to $\ell + k$)
$\varphi_J^{\ell k}(\ \mathbf{x}\)$	Learnable radial function depending only on distance $\ \mathbf{x}\ $
$\mathbf{W}_J^{\ell k}(\mathbf{x})$	Basis kernel determined by angular structure
$Y_{Jm}(\mathbf{x}/\ \mathbf{x}\)$	Spherical harmonic (angular dependence)
$\mathbf{Q}_{Jm}^{\ell k}$	Clebsch–Gordan coefficient matrices, shape $(2\ell+1)\times(2k+1)$
$\mathbf{f}_{ ext{in},j}^k$	Input feature of type k at node j
$\mathbf{f}_{\mathrm{out},i}^{\ell} \ w^{\ell\ell}$	Output feature of type ℓ at node i
$w^{\ell\ell}$	Scalar self-interaction parameter (for $k = \ell, J = 0$)
$\mathbf{x}_j - \mathbf{x}_i$	Relative position vector between nodes i and j

Step 2: Get SO(3)-equivariant weight matrices



$$\mathbf{W}^{\ell k}(\mathbf{x}) = \sum_{J=|\ell-k|}^{\ell+k} \varphi_J^{\ell k}(\|\mathbf{x}\|) \, \mathbf{W}_J^{\ell k}(\mathbf{x}),$$

where

$$\mathbf{W}_{J}^{\ell k}(\mathbf{x}) = \sum_{m=-J}^{J} Y_{Jm} \left(\frac{\mathbf{x}}{\|\mathbf{x}\|} \right) \mathbf{Q}_{Jm}^{\ell k}.$$

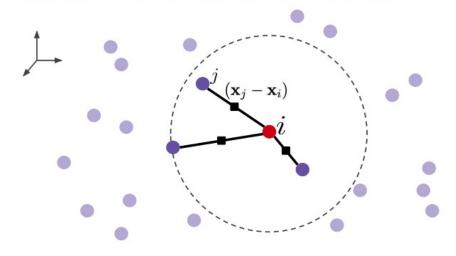
The TFN layer output is

$$\mathbf{f}_{\mathrm{out},i}^{\ell} = \underbrace{w^{\ell\ell}\mathbf{f}_{\mathrm{in},i}^{\ell}}_{\mathrm{self-interaction}} + \sum_{k\geq 0} \sum_{j\neq i} \mathbf{W}^{\ell k}(\mathbf{x}_j - \mathbf{x}_i) \, \mathbf{f}_{\mathrm{in},j}^k.$$

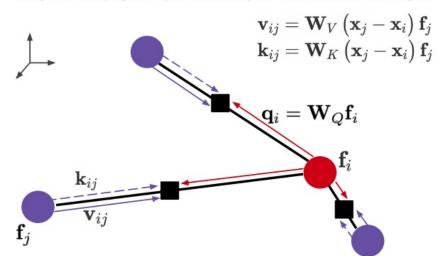
The kernel $\mathbf{W}^{\ell k}(\mathbf{x})$ mapping features of type k to type ℓ is expressed as a sum over basis kernels indexed by J. Each feature \mathbf{f}_j a concatenation of vectors of different types. Each basis kernel separates **radial dependence**, captured by a learnable function $\varphi_J^{\ell k}(\|\mathbf{x}\|)$, and **angular dependence**, determined by spherical harmonics Y_{Jm} and Clebsch–Gordan coefficients $\mathbf{Q}_{Jm}^{\ell k}$. This structure ensures equivariance to rotations. The special case $J=0, k=\ell$ corresponds to a learnable scalar times the identity, known as **self-interaction**. Altogether, the roto-translation equivariant layer combines self-interaction with message passing via equivariant kernels depending on relative positions $\mathbf{x}_j - \mathbf{x}_i$. Note that this design comes from a prior work Tensor Field Network.

In practice, we have type-0 vectors that are invariant under rotations (like node type) and type-1 vectors that rotate according to 3D rotation matrices (positions and velocities).

Step 1: Get nearest neighbours and relative positions



Step 3: Propagate queries, keys, and values to edges



Step 2: Get SO(3)-equivariant weight matrices

Clebsch-Gordon Coeff.

Radial Neural Network

Spherical Harmonics

 $\mathbf{Q}_{Jm}^{\ell k}$

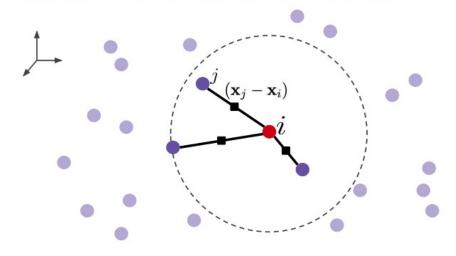
$$arphi_J^{\ell k}(||x||)$$

$$Y_{Jm}\left(rac{x}{||x||}
ight)$$

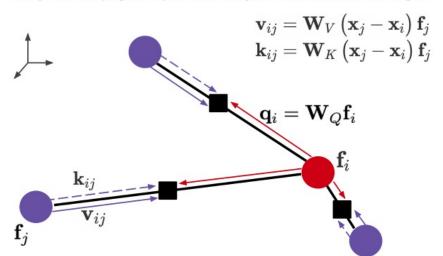
Matrix W consists of blocks mapping between degrees

$$\mathbf{W}(x) = \mathbf{W}\left(\left\{\mathbf{Q}_{Jm}^{\ell k},\,arphi_{J}^{\ell k}(||x||),\,Y_{Jm}\left(rac{x}{||x||}
ight)
ight\}_{J,m,\ell,k}
ight)$$

Step 1: Get nearest neighbours and relative positions



Step 3: Propagate queries, keys, and values to edges



Step 2: Get SO(3)-equivariant weight matrices

Clebsch-Gordon Coeff. Radial Neural Network Spherical Harmonics

$$\mathbf{Q}_{Jm}^{\ell k}$$

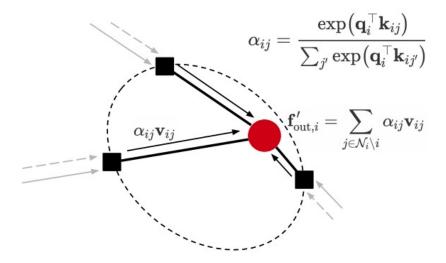
$$arphi_J^{\ell k}(||x||)$$

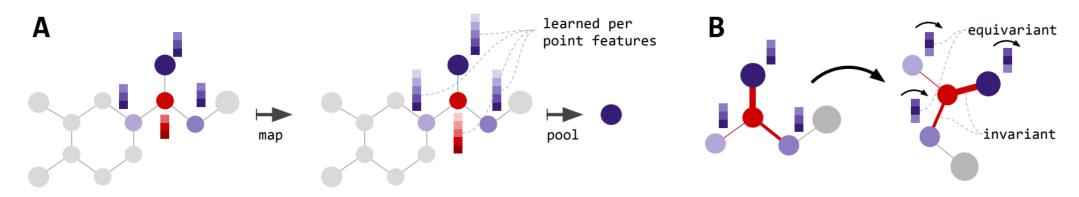
$$Y_{Jm}\left(rac{x}{||x||}
ight)$$

Matrix W consists of blocks mapping between degrees

$$\mathbf{W}(x) = \mathbf{W}\left(\left\{\mathbf{Q}_{Jm}^{\ell k},\,arphi_J^{\ell k}(||x||),\,Y_{Jm}\left(rac{x}{||x||}
ight)
ight\}_{J,m,\ell,k}
ight)$$

Step 4: Compute attention and aggregate





- Each layer maps from a point cloud to a point cloud (or graph to graph) while guaranteeing equivariance.
- Attention weights (indicated by line thickness) are invariant w.r.t. input rotation, MPNN messages are equivariant
- Main idea: Obtain invariant/equivariant final node/graph level representations, apply usual prediction heads

Live coding: SE(3)-Transformer

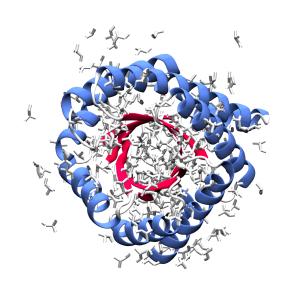
[Link]

Geometric Generative Modeling: Background

Fundamentals of Diffusion & Flows

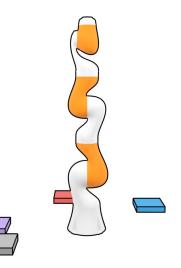
Generative Models Beyond Images and Text

Scientific Data



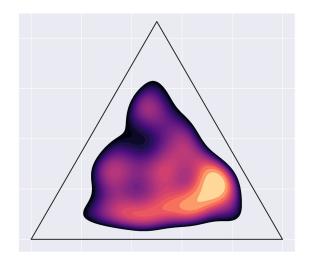
SE(3) invariant Protein structure generation

Robotics



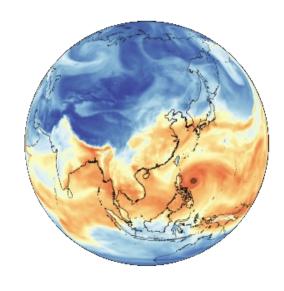
SO(2) invariant Block stacking

Information Geometry



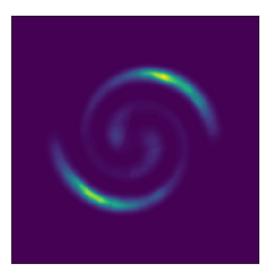
Fisher-Rao geometry
On the probability Simplex

Climate Modeling



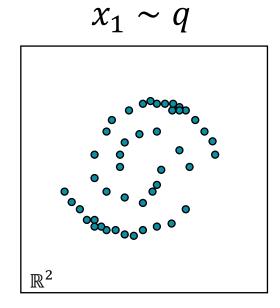
Spherical Geometry \mathbb{S}^2

• Unknown: data distribution q



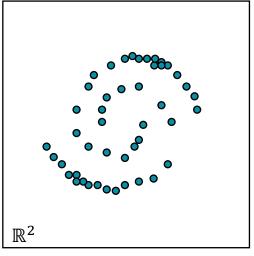
Unknown: data distribution q

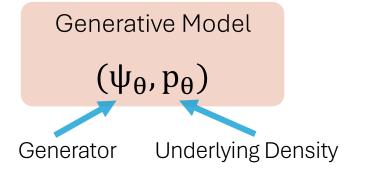
• Given: samples $x_1 \sim q$



Goal: learn a sampler from the unknown q

- Unknown: data distribution q
- Given: samples $x_1 \sim q$
- Learn: neural network with parameters θ





Goal: find parameters θ s.t. $p_{\theta} \approx q$

- Coupling: Sample from a noise-data pair (X_0, X_1)
- Interpolation: Construct interpolation:

$$X_t = tX_1 + (1 - t)X_0$$

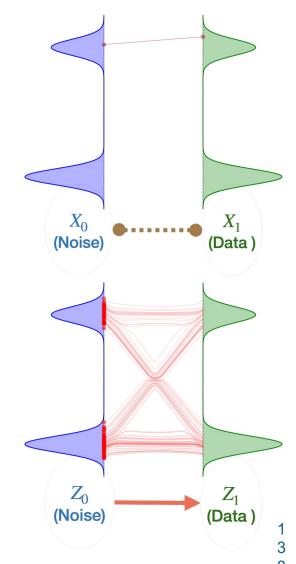
Learn: neural network with parameters

$$\dot{Z}_t = v_t(Z_t)$$

by minimizing

$$\min_{\mathbf{v}} \int_{0}^{1} \mathbb{E}_{(\mathbf{X}_{0}, \mathbf{X}_{1})} [\|\dot{\mathbf{X}}_{t} - \mathbf{v}_{t}(\mathbf{X}_{t})\|^{2}]$$

where $\dot{X}_t = X_1 - X_0$ are the line directions.



Geometric Generative Modeling: Graph Generation Generating graph data with desired properties.

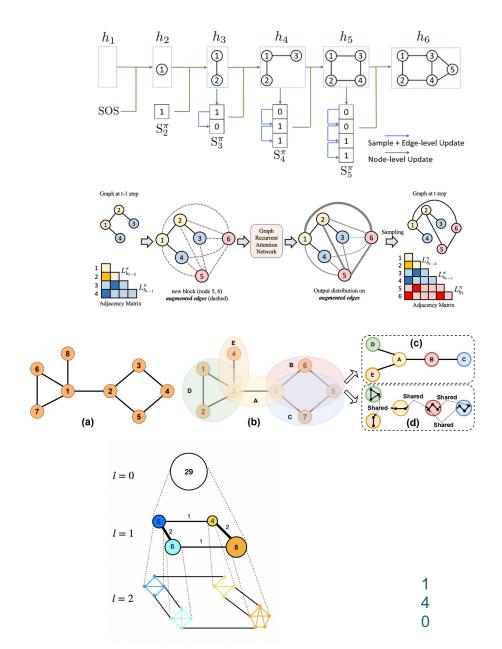
Sequential Methods

GraphRNN: Add nodes one by one, each connects to previous nodes sequentially using an RNN

GRAN: Add nodes (or groups), then decide edges in parallel with a GNN

TD-Gen: Generate a tree decomposition first, map each tree node to a subgraph via GraphRNN-style process

HiGen: Hierarchical generation from coarse to fine, capturing global structure and local details



VAE and GAN based Approaches

GraphVAE:

Encode adjacency matrix into a latent space with a GNN

Decode back to reconstruct the graph

Challenge: permutation invariance ⇒ multiple valid reconstructions

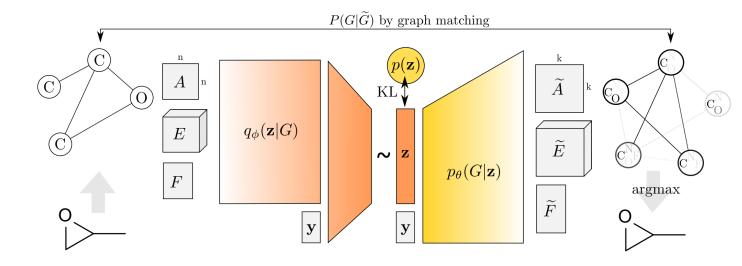
Solution: high-complexity graph matching to align outputs

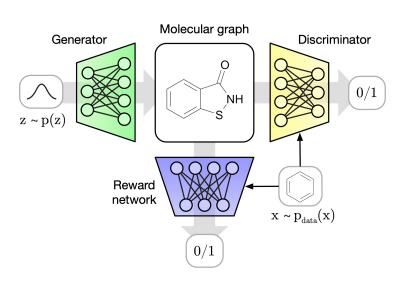
MolGAN:

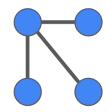
GAN framework for molecular graphs

Learns graph distribution without explicit likelihood

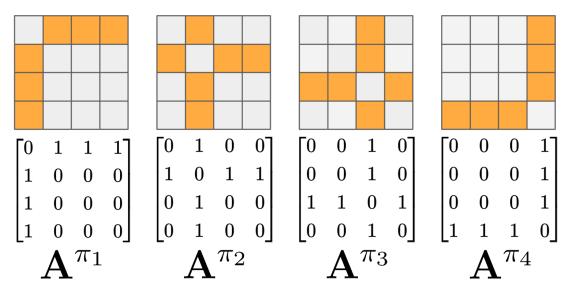
Limitation: training instability, mode collapse issues







An example graph w/ 4 nodes.

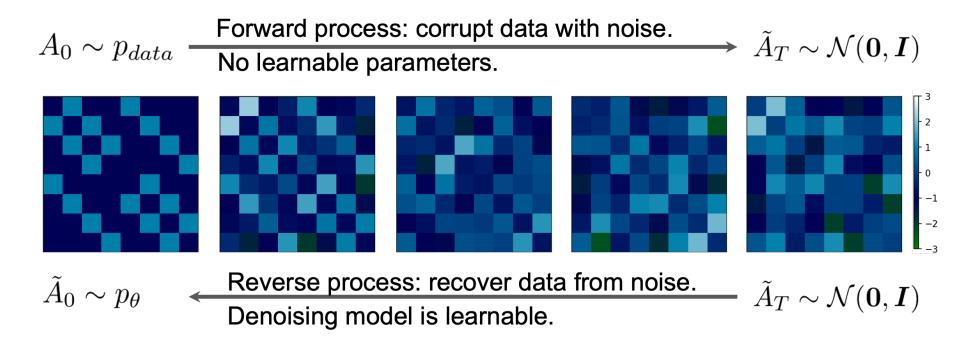


These 4 distinct adjacency matrices stand for the same graph.

When represented in adjacency matrices, one graph has up to O(n!) distinct representations.

Permutation invariance: how to let generative models treat as "equally likely to happen"?

$$p_{\theta}(A^{\pi_1}) = p_{\theta}(A^{\pi_2}) = p_{\theta}(A^{\pi_3}) = \cdots$$
$$p_{\theta}(A) = p_{\theta}(PAP^{\top}) \quad \forall P \in \mathcal{S}_n$$



Pipeline of denoising generative models (flow matching / diffusion) on graph data.

Theorem 1. If $\mathbf{s}: \mathbb{R}^{N \times N} \to \mathbb{R}^{N \times N}$ is a permutation equivariant function, then the scalar function $f_s = \int_{\gamma[\mathbf{0},A]} \langle \mathbf{s}(X), \mathrm{d}X \rangle_F + C$ is permutation invariant, where $\langle A, B \rangle_F = \mathrm{tr}(A^\top B)$ is the Frobenius inner product, $\gamma[\mathbf{0},A]$ is any curve from $\mathbf{0}=\{0\}_{N \times N}$ to A, and $C \in \mathbb{R}$ is a constant.

• For generative models, we use the score function $s(X) = \nabla log p_t(X)$.

Diffusion and Score Models

Forward SDF

$$dx_t = f_t(x_t)dt + g_t dw_t$$

Data → Noise

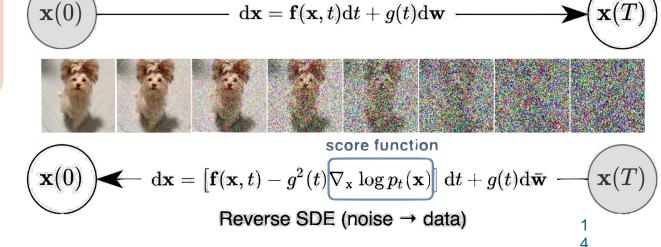
Reverse SDF

$$d\overline{x}_t = (f_t(x_t) - g_t^2 \nabla \mathrm{log} p_t) dt + g_t d\overline{w}_t$$
 Noise \rightarrow Data

The Fokker-Planck Equation

$$\partial_t p_t = -\text{div}(p_t f_t) + \frac{1}{2} g_t^2 \nabla^2 p_t$$

The Score!



Forward SDE (data → noise)

Sohl-Dickstein et al., **Deep unsupervised learning using nonequilibrium thermodynamics**. (ICML 2015) Ho et at., **Denoising Diffusion Probabilistic Models**. (NeurIPS 2020)

Theorem 1. If $\mathbf{s}: \mathbb{R}^{N \times N} \to \mathbb{R}^{N \times N}$ is a permutation equivariant function, then the scalar function $f_s = \int_{\gamma[\mathbf{0},A]} \langle \mathbf{s}(X), \mathrm{d}X \rangle_F + C$ is permutation invariant, where $\langle A, B \rangle_F = \mathrm{tr}(A^\top B)$ is the Frobenius inner product, $\gamma[\mathbf{0},A]$ is any curve from $\mathbf{0}=\{0\}_{N \times N}$ to A, and $C \in \mathbb{R}$ is a constant.

- For generative models, we use the score function $s(X) = \nabla log p_t(X)$.
- The (implicit) induced density function defined below is permutation invariant!

$$\log p_{\theta}(A) = \int_{\gamma[0,A]} \langle \mathbf{s}_{\theta}(X), dX \rangle_F + \log p_{\theta}(\mathbf{0}).$$

- Open question: does it hinder or boost performance for graph generative models?
 - Recent counter-examples: AlphaFold 3, DiffAlign, SwinGNN, etc.
- AlphaFold 3: "The diffusion module operates directly on raw atom coordinates, and on a coarse abstract token representation, without rotational frames or any equivariant processing."

More Resources

- UvA GeDL: Introduction to group equivariant deep learning
 - Excellent lecture notes & resources
- Fabian Fuchs: AlphaFold 2 & Equivariance
- AlchemyBio: Deconstructing SE(3)-Transformer
 - Very in-depth into the invariant/equivariant tools discussed
- LoG 2024: Geometric Generative Models Tutorial
 - A very comprehensive tutorial our GGM notes are based on goes into derivations of diffusion, flows and molecular applications
 - Also has additional coding tutorials!
- Several extensive blog posts on diffusion/scores/flows:
 - What are Diffusion Models?
 - Building Diffusion Models' theory from ground up
 - Flow With What You Know
 - A visual dive into conditional flow matching

References

- Abramson, J., Adler, J., Dunger, J., Evans, R., Green, T., Pritzel, A., Ronneberger, O., Willmore, L., Ballard, A. J., Bambrick, J., & others. (2024). Accurate structure prediction of biomolecular interactions with AlphaFold 3. *Nature*, 630(8016), 493–500.
- Alon, U., & Yahav, E. (2020). On the bottleneck of graph neural networks and its practical implications. ArXiv Preprint ArXiv:2006.05205.
- Arnaiz-Rodríguez, A., & Velingker, A. (n.d.). *Graph Learning: Principles, Challenges, and Open Directions*. Tutorial presented at 41st International Conference on Machine Learning (ICML), Vienna, Austria, 22 July 2024. [Online]. Available: https://icml2024graphs.ameyavelingker.com/.
- Azabou, M., Ganesh, V., Thakoor, S., Lin, C.-H., Sathidevi, L., Liu, R., Valko, M., Veličković, P., & Dyer, E. L. (2023). Half-hop: A graph upsampling approach for slowing down message passing. *International Conference on Machine Learning*, 1341–1360.
- Battaglia, P., Hamrick, J. B. C., Bapst, V., Sánchez, Á., Zambaldi, V., Malinowski, M., Tacchetti, A., Raposo, D., Santoro, A., Faulkner, R., Gulcehre, Ç., Song, F., Ballard, A., Gilmer, J., Dahl, G. E., Vaswani, A., Allen, K., Nash, C., Langston, V. J., ... Pascanu, R. (2018). Relational inductive biases, deep learning, and graph networks. *ArXiv Preprint ArXiv:1806.01261*. https://arxiv.org/pdf/1806.01261.pdf
- Bresson, X., & Laurent, T. (2018). Residual Gated Graph ConvNets. https://arxiv.org/abs/1711.07553
- Bronstein, M. M., Bruna, J., Cohen, T., & Veličković, P. (2021). Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges.
- Bronstein, M. M., Bruna, J., LeCun, Y., Szlam, A., & Vandergheynst, P. (2017). Geometric Deep Learning: Going beyond Euclidean data. IEEE Signal Processing Magazine, 34(4), 18–42.
- Cantürk, S., Liu, R., Lapointe-Gagné, O., Létourneau, V., Wolf, G., Beaini, D., & Rampášek, L. (2023). Graph positional and structural encoder. ArXiv Preprint ArXiv:2307.07107.
- Chen, J., Gao, K., Li, G., & He, K. (2022). NAGphormer: A tokenized graph transformer for node classification in large graphs. ArXiv Preprint ArXiv:2206.04910.
- Daigavane, A., Ravindran, B., & Aggarwal, G. (2021). Understanding Convolutions on Graphs. Distill. https://doi.org/10.23915/distill.00032
- De Cao, N., & Kipf, T. (2018). MolGAN: An implicit generative model for small molecular graphs. ArXiv Preprint ArXiv:1805.11973.
- Dumoulin, V., & Visin, F. (2018). A guide to convolution arithmetic for deep learning. https://arxiv.org/abs/1603.07285
- Dwivedi, V. P., & Bresson, X. (2020). A generalization of transformer networks to graphs. ArXiv Preprint ArXiv:2012.09699.
- Dwivedi, V. P., Rampášek, L., Galkin, M., Parviz, A., Wolf, G., Luu, A. T., & Beaini, D. (2022). Long range graph benchmark. Advances in Neural Information Processing Systems, 35, 22326–22340.
- Errica, F., Christiansen, H., Zaverkin, V., Maruyama, T., Niepert, M., & Alesiani, F. (2023). Adaptive message passing: A general framework to mitigate oversmoothing, oversquashing, and underreaching. ArXiv Preprint ArXiv:2312.16560.
- Eschenburg, K. M., Grabowski, T. J., & Haynor, D. R. (2021). Learning cortical parcellations using graph neural networks. Frontiers in Neuroscience, 15, 797500.
- Fey, M., Kocijan, V., Lopez, F., Lenssen, J. E., & Leskovec, J. (n.d.). KumoRFM: A Foundation Model for In-Context Learning on Relational Data.
- Fuchs, F., Worrall, D., Fischer, V., & Welling, M. (2020). Se (3)-transformers: 3d roto-translation equivariant attention networks. Advances in Neural Information Processing Systems, 33, 1970–1981.
- Geisler, S. M., Kosmala, A., Herbst, D., & Günnemann, S. (2024). Spatio-spectral graph neural networks. Advances in Neural Information Processing Systems, 37, 49022–49080.

References

Hamilton, W.L. (2020). Graph Representation Learning. In Synthesis Lectures on Artifical Intelligence and Machine Learning. Morgan & Claypool.

Hamilton, W.L., Ying, R., & Leskovec, J. (2017). Inductive representation learning on large graphs. Proceedings of the 31st International Conference on Neural Information Processing Systems, 1025–1035.

Ho, J., Jain, A., & Abbeel, P. (2020). Denoising diffusion probabilistic models. Advances in Neural Information Processing Systems, 33, 6840–6851.

Karami, M. (2023). Higen: Hierarchical graph generative networks. ArXiv Preprint ArXiv:2305.19337.

Kipf, T. N., & Welling, M. (2017). Semi-Supervised Classification with Graph Convolutional Networks. International Conference on Learning Representations. https://openreview.net/forum?id=SJU4ayYgl

Kreuzer, D., Beaini, D., Hamilton, W., Létourneau, V., & Tossou, P. (2021). Rethinking graph transformers with spectral attention. Advances in Neural Information Processing Systems, 34, 21618–21629.

Laabid, N., Rissanen, S., Heinonen, M., Solin, A., & Garg, V. (2024). Equivariant Denoisers Cannot Copy Graphs: Align Your Graph Diffusion Models. ArXiv Preprint ArXiv:2405.17656.

Leskovec, J. (n.d.). CS224W: Machine Learning with Graphs. Stanford University, Stanford, CA, Fall 2024. [Online]. Available: https://web.stanford.edu/class/cs224w/.

Li, Y., & King, I. (2020). Autograph: Automated graph neural network. International Conference on Neural Information Processing, 189–201.

Liao, R., Li, Y., Song, Y., Wang, S., Hamilton, W., Duvenaud, D. K., Urtasun, R., & Zemel, R. (2019). Efficient graph generation with graph recurrent attention networks. Advances in Neural Information Processing Systems, 32.

Lipman, Y., Chen, R. T., Ben-Hamu, H., Nickel, M., & Le, M. (2022). Flow matching for generative modeling. ArXiv Preprint ArXiv:2210.02747.

Min, Y., Wenkel, F., & Wolf, G. (2020). Scattering gcn: Overcoming oversmoothness in graph convolutional networks. Advances in Neural Information Processing Systems, 33, 14498–14508.

Niu, C., Song, Y., Song, J., Zhao, S., Grover, A., & Ermon, S. (2020). Permutation invariant graph generation via score-based generative modeling. *International Conference on Artificial Intelligence and Statistics*, 4474–4484.

Ou, M., Cui, P., Pei, J., Zhang, Z., & Zhu, W. (2016). Asymmetric Transitivity Preserving Graph Embedding. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 1105–1114. https://doi.org/10.1145/2939672.2939751

Perozzi, B., Al-Rfou, R., & Skiena, S. (2014). DeepWalk: online learning of social representations. *Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining*, 701–710. https://doi.org/10.1145/2623330.2623732

Qiang Liu. (2024). PyTorch RectifiedFlow. https://github.com/lqiang67/rectified-flow

Rampášek, L., Galkin, M., Dwivedi, V. P., Luu, A. T., Wolf, G., & Beaini, D. (2022). Recipe for a general, powerful, scalable graph transformer. *Advances in Neural Information Processing Systems*, 35, 14501–14515.

Sanchez-Lengeling, B., Reif, E., Pearce, A., & Wiltschko, A. B. (2021). A Gentle Introduction to Graph Neural Networks. Distill. https://doi.org/10.23915/distill.00033

Sato, R. (2020). A Survey on The Expressive Power of Graph Neural Networks. https://arxiv.org/abs/2003.04078

References

Satorras, V. G., Hoogeboom, E., & Welling, M. (2021). E (n) equivariant graph neural networks. International Conference on Machine Learning, 9323–9332.

Scarselli, F., Gori, M., Ah Chung Tsoi, Hagenbuchner, M., & Monfardini, G. (2009). The Graph Neural Network Model. *IEEE Transactions on Neural Networks*, 20(1), 61–80. https://doi.org/10.1109/TNN.2008.2005605

Shirzad, H., Hajimirsadeghi, H., Abdi, A. H., & Mori, G. (2022). Td-gen: graph generation using tree decomposition. International Conference on Artificial Intelligence and Statistics, 5518–5537.

Shirzad, H., Velingker, A., Venkatachalam, B., Sutherland, D. J., & Sinop, A. K. (2023). Exphormer: Sparse transformers for graphs. International Conference on Machine Learning, 31613–31632.

Simonovsky, M., & Komodakis, N. (2018). Graphvae: Towards generation of small graphs using variational autoencoders. International Conference on Artificial Neural Networks, 412–422.

Sohl-Dickstein, J., Weiss, E., Maheswaranathan, N., & Ganguli, S. (2015). Deep unsupervised learning using nonequilibrium thermodynamics. International Conference on Machine Learning, 2256–2265.

Song, Y., Sohl-Dickstein, J., Kingma, D. P., Kumar, A., Ermon, S., & Poole, B. (2020). Score-based generative modeling through stochastic differential equations. ArXiv Preprint ArXiv:2011.13456.

Sun, C., Li, C., Lin, X., Zheng, T., Meng, F., Rui, X., & Wang, Z. (2023). Attention-based graph neural networks: a survey. Artificial Intelligence Review, 56(Suppl 2), 2263–2310.

Topping, J., Di Giovanni, F., Chamberlain, B. P., Dong, X., & Bronstein, M. M. (2021). Understanding over-squashing and bottlenecks on graphs via curvature. ArXiv Preprint ArXiv:2111.14522.

Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., & Bengio, Y. (2018). Graph attention networks. The 6th ICLR.

Weiler, M. (n.d.). Equivariant neural networks – what, why and how? An introduction to equivariant & coordinate independent CNNs – Part 1. Blog post, Maurice Weiler's website, Nov. 7, 2023. [Online]. Available: https://maurice-weiler.gitlab.io/blog_post/cnn-book_1_equivariant_networks/.

Wu, Q., Zhao, W., Li, Z., Wipf, D. P., & Yan, J. (2022). Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems, 35, 27387–27401.

Xu, K., Hu, W., Leskovec, J., & Jegelka, S. (2019). How powerful are graph neural networks? *Proc. of ICLR*.

Xu, Keyulu, Li, C., Tian, Y., Sonobe, T., Kawarabayashi, K., & Jegelka, S. (2018). Representation learning on graphs with jumping knowledge networks. International Conference on Machine Learning, 5453–5462.

Yan, Q., Liang, Z., Song, Y., Liao, R., & Wang, L. (2023). Swingnn: Rethinking permutation invariance in diffusion models for graph generation. ArXiv Preprint ArXiv:2307.01646.

Ying, C., Cai, T., Luo, S., Zheng, S., Ke, G., He, D., Shen, Y., & Liu, T.-Y. (2021). Do transformers really perform badly for graph representation? Advances in Neural Information Processing Systems, 34, 28877—28888.

Ying, R., You, J., Morris, C., Ren, X., Hamilton, W. L., & Leskovec, J. (2018). Hierarchical Graph Representation Learning with Differentiable Pooling. Advances in Neural Information Processing Systems, 31. https://proceedings.neurips.cc/paper/2018/file/e77dbaf6759253c7c6d0efc5690369c7-Paper.pdf

You, J., Ying, R., Ren, X., Hamilton, W., & Leskovec, J. (2018). Graphrnn: Generating realistic graphs with deep auto-regressive models. International Conference on Machine Learning, 5708–5717.

Zhao, L., & Akoglu, L. (2019). Pairnorm: Tackling oversmoothing in gnns. ArXiv Preprint ArXiv:1909.12223.