Geometrie

and Topological
Representation
Learning

Semih Canturk Université I‘H'\
de Montréal

Hamed Shirzad & Mila

/_
.\

VECTOR
Qi Yan ' -\ INSTITUTE

o
z oz 5 “Signal Processing in the Age of Large Language Models”
ISTANBUL LUTFI KIRDAR INTERNATIONAL CONVENTION AND EXHIBITION CENTRE - ICEC
’

mlsp2025graphs.github.io

mlsp2025graphs.github.io
mlsp2025graphs.github.io

Part | RN
Graph Representatlons -

A Primer 7 A

> =

Part I: Outline

1. Primer on Graph Machine Learning

akrwbh~

Graph Representations: A Primer
Early Methods

Graph Neural Networks (GNN)
Graph Convolutions

Graph Isomorphism and Expressivity

Graphs

» Set of Nodes =1/
* Optionally with features X

* Set of Edges = F

* Adjacency Matrix =A

Graphs

* Graphs G are defined by:
* Vertices V= {Uly “e 7Un}
* Edges (undirected) F = {ep ={i,j}:1,7 €V} CV xV
* Adjacency matrix A - a;; =1& () c E

* Neighborhood: N() =4j:(i,j) € E}

* Degree: ‘ ()‘

e Attributes:

* Node features: X : V' —]Rd X : (Xl,...,

/
. Edge features: e : F — R¢

https://geometricdeeplearning.com/

Abundance of graph-structured data

3D shapes

Molecular structure The syntax of language and code Networks of neurons

Types of tasks

* Node-level tasks
o Node classification
o Node clustering
o Node regression

* Edge-level tasks
o Link prediction
o Edge classification
o Knowledge graph completion

* Graph-level tasks
o Graph classification
o Graph regression

(®)

FOo

What is graph representation learning?

Goal: To learn useful node and graph representations
without hand-crafted features

node 2 vec
U > NN
g : R — R _)
iy
7, € R?
O G
graph 2 vec

TS Vi wap—

~
O ZgERd

8

Why is it hard?

* Most deep learning methods are designed for regular sequences:
* CNNSs for regular grids: audio (1D) |mages (2D/3D), .

S

* RNNs for sequences: text, audio, ... geometric

structure!
@
f t 1
WW eeoeoeo |+ [AA » [
i ® ® ©

Graphs lack
such regular

Figures from

Raw Data Graph Repr. Adjacency Matrix

Graphs

o Graphs are all are |

a<, p -—» re —»éu]—»{roundj—t@ all

= aI‘OllIld us around

Q

o0

©

£

Molecule

https://distill.pub/2021/gnn-intro/

Key challenges of graph data

1. Complex geometric structure
(often no straightforward notions of spatial locality)

O—CO

YO8
2. Inherent symmetries lead to non-unique representations

Graph-level £ RVIXIVI _, Rd f(PAP') = f(A),VP € P

functions must be
invariant to node

permutations g: RIVIXIVE _ rIVIxd g(PAPT) — Pg(A),\V/P cP

11

Key challenges of graph data

1. Complex geometric structure
(often no straightforward notions of spatial locality)

O—CO

YO8
2. Inherent symmetries lead to non-unique representations

function on
permutec;lcadjacency f . R|V|X|V| — Rd f(PAPT) — f(A),\V/P - IP)
matrix
=g RVIXIVIE L RIVIXd g(PAPT) = Pg(A),VP € P
unction on origina
adjacency matrix »

Key challenges of graph data

1. Complex geometric structure
(often no straightforward notions of spatial locality)

O—O
Oe!
O

b

2. Inherent symmetries lead to non-unique representations

Node-level functions
must be equivariant
to node
permutations

foRVIXVE R

f(PAP") = f(A),VP € P

g : RIVIXIVI , RIVIxd

g(PAP") =Pg(A),VP € P

13

Key challenges of graph data

1. Complex geometric structure
(often no straightforward notions of spatial locality)

O—CO

b, 44 |
2. Inherent symmetries lead to non-unique representations
permutation of input

_ FoRIVIXIVIE s R f(PAP") = f(A),VP € P
equivalent

permutation applied ¢ : RIVIXIVI RIVIXd | g(PAP)| Pg(A), VP € P

to output

14

Data invariance & equivariance

Invariance

Computer

Graph
Learning

Vision

:

reflect l

rotate l

e

p

?

*ﬁfi

“Cat n

A

wrgy

E tomization

a
mn:rgy

Equivariance

' segment
>

reflect l

reﬂect

>
segment

predict

Y

force field

l rotate

predict
>
force field ,'

15

https://maurice-weiler.gitlab.io/blog_post/cnn-book_1_equivariant_networks/

Isomorphism is often a bottleneck

* Even determining whether two graphs are the same
(isomorphism testing) is computationally difficult!
min ||A1 — PA.QPT ||

PcP
Does there exist a permutation matrix
such that
the adjacency matrix of graph one
equals

a permutation of the adjacency matrix of graph two?

* “NP-indeterminate” problem

7

16

Early Methods -

Node Embeddings and Graph Kernels

Classic approach: Node Embeddings

* Goalisto encode nodes so that
similarity in the embedding space (e.g., dot product)
approximates similarity in the original graph

similarity (u, v) ~ z, 2z,

original network embedding space

Illustration credit : 18

http://web.stanford.edu/class/cs224w/

Node embeddings

* Traditional node embedding approaches use
a shallow encoder: encoder is just an embedding-lookup

ENC (’U) — ZV embedding vector
, for a specific node
embedding] /
matrix, each column matrix o
Z € RdX|V| :) \ :/

is node embedding 7 — o Dimension
[what we learn!] — E (i.e., size) of
; embeddings

=]I|V| indicator vector, all |]

Y
Z6roes .except one one column per node
indicating node v

http://web.stanford.edu/class/cs224w/

Node embeddings: Examples

* Adjacency-based similarity (HOPE; Ou et al. 2016):

T

Z,, Ly N

AFu, v]

k™" power of the adjacency matrix

walks of length-k between u and v

* Random-walk based similarity (DeepWalk; Perozzi et al. 2014):

vvvvvv

T T

-
Z.,, Z

(a) Input: Karate Graph (b) Output: Representation

probability that v and v co-
/= occuronarandom walk
over the network

20

Limitations of traditional node

embeddings

1. O(|V|) parameters are needed:

There is no parameter sharing and every node has its own unique
embedding vector

2. Inherently “transductive”:

Cannot generate embeddings for nodes that were not seen during
training

3. Does notincorporate node features:
Many graphs have features that we can and should leverage

21

Towards Graph Neural Networks

Traditional node embeddings Graph neural networks
Encoder is just a shallow lookup from an Encoder is complex function of graph
embedding matrix structure and node features

ENC(v) = Zv ENC(v) = f(A, X)

dXx|V| Embedding matrix, each V|x|V| adjacency matrix for the
Z = R columnis node embedding A - R' | | | graph

V & H|V| indicator vector for node v X € R|V|><d matrix of node features

22

/4 R4

Graph Neural thWOka-)

. » .
<y *
. -

S

Intuition: Convolutional Networks

* Images as graphs: Filters capture neighborhood on a grid graph

O a0
NS o

(2)
1]
A

RIRI LG

* GNNs generalize this intuition to general graphs
* Challenge: neighborhoods look different!

Image from
24

https://distill.pub/2021/gnn-intro/

Graph Neural Networks

* Most GNNs are based on the idea of iterative neighborhood
aggregation, a.k.a. Message Passing

Layer 1

u? ul

ul:=f1 (u®, neighbors(u))

the update is done
in parallel for all nodes

25

Graph Neural Networks

* Most GNNs are based on the idea of iterative neighborhood
aggregation, a.k.a. Message Passing

Layer 1 Layer 2

ul:=f1 (u? neighbors(u)) u2:=f2 (ul,neighbors(u))

the update is done
in parallel for all nodes 26

The family of MPNN's

* Message Passing Neural Networks (MPNN)
are a general class of GNNs

h(*+1) = yppaTE®) (hg’“), AGGREGATE® ({h®) Vv e N/ (u)}))
_ (k) (h(E) |y (k)
— UPDATE (hu m N(u)> : \

Information aggregated from
\' neighboring nodes
(sormetimes called the “messages”

from the neighbors)

27

The family of MPNN's

* Message Passing Neural Networks (MPNN)
are a general class of GNNs

h(*+1) —|uppATE*) (hg’“), AGGREGATE™ ({h®) Vv € N(u)})

_ (k) (1. (k) | (K)
=|UPDATE (hu M) \

Information aggregated from

/ neighboring nodes

Combined “new” embedding of (sometimes called the “messages”
this node with the previous layer from the neighbors)

28

The family of MPNN's

* Message Passing Neural Networks (MPNN)
are a general class of GNNs

Updated node embedding

~
h{*+1) —|uppATE® (hg’“), AGGREGATE® ({h{®) Vv € N (u)})
_ (k) (1 (k) |o1a (K)
=|UPDATE (hu M) \

Information aggregated from

/ neighboring nodes

Combined “new” embedding of (sometimes called the “messages”
this node with the previous layer from the neighbors)

29

The basic Graph Neural Network

- A“basic” GNN (Scarsellj et al., 2008) %

Initial “layer 0” embeddings

-/ are equal to node features

h(" =@ [WihE + Wi " h=D 4 p®

neigh
kth laye.r previous layer \
embedding non-linearity embedding of u sum of neighbor’s previous
of v (e.g., RelLU)

layer embeddings -

Graph Attention Networks (GATSs)

* Aggregating with self-attention (local Transformer on graphs),
Velickovic et al. (2018)

acerrcate({h(), o e N(w)}) = > |a(h, h))h("

veN (u) A
dfll
5 Pair-wise

node attention to
reweight messages
from the neighbors

Multi-head attention
(like in Transformers)

Wh; Wh;, 31

Generalized neighborhood aggregation

* Aggregating more complex transformations of the neighbor
features, as in Hamilton et al. (2017)’s GraphSAGE:

AGGREGATE({h{® Vv € N(u)}) = !Ntu)\ > MLP(h{")

veN (u)

Explore the neighborhood
(e.g., random walks) and
aggregate with e.g. MLP or RNN
instead of sum or average

32

\Cba (:fbl) ('qybu CAM)) .:nba Clbb
o i) "N NOF
\ X Al X, \ X}, .u()’b(;" X, \ Xp '::.“.v(_‘ml)(,‘r [Xe
o S / Ny m / TN
Cbd be\ /» U < agp\ > bd < mype
xd/ b, o8 Xd: X, Xci Xe
Convolutional Attentional Message-passing
h; =¢ Xi;® cijp(x;) h; =¢ Xp@ a(x;, %7)(x;) h; =¢| x;, ®1P(Xi,xj)
JEN; JEN 4EHy

»GCN: Graph Convolutional Network (Kipf and Welling, 2017)
» GAT: Graph Attention Network (Velickovi¢ et al., 2018)

»GatedGCN: Residual Gated Graph ConvNets (Bresson & Laurent,
2018)

»GIN: Graph Isomorphism Network (Xu et al., 2018)

33

A few usetul tricks

* Include edge and/or graph-level features during message-passing
(e.g., Battaglia et al., 2018)

* Residual connections between layers, GraphNorm, ...

* Jumping knowledge (JK) connections (Xu et al., 2018):

2=0®] 2= f(x, b, b))

Instead of using the final GNN layer Define the node embeddings as a function of the
output as the node embeddings representations at all intermediate layers!

34

Advantages of MPNNs

1. Number of parameters is independent of the graph size:
The parameters in the GNN layers depend only on the dimension
of the feature inputs

2. Inherently “inductive”:
After training GNNs can be used to infer embeddings on unseen
graphs

3. Naturally incorporate node features:
GNNs learn by aggregating node features over local
neighborhoods

35

Readout layer

* After L message-passing
layers, we get embeddings
h, ateachu

e How to convert to a final
prediction?

* Use areadout layer, aka
prediction/output heads

Node-level task:

v = freadout (hq(JL))

Graph-level task:
hG — freadout({{hq()L) ‘ S V}})

Edge-level task:
Suv = freadout(hf&L)a hfgL))

36

Graph classification: Node pooling

* Pool node embeddings ===) get embedding for the whole graph
* The pooling function must be invariant w.r.t. node ordering

* Sum pooling: simply sum the node embeddings:

Embedding for the
entire graph

_-\

Sum over all the node
embeddings in the

graph

37

Graph classification: Node pooling

* Hierarchical pooling (e.g., Ying et al. (2018)’s DiffPool)
1. Coarsen graph by clustering or removing nodes based on their embeddings
2. Runanother GNN on coarsened graph
3. Repeat until graph is just a single node (or use a final sum pooling layer)

Original Pooled network Pooled network Pooled network Graph
network at level 1 at level 2 at level 3 classification

38

Summary of MPNNs

* MPNN = GNN based on “Neural Message Passing” paradigm
* A layer of MPNN is principally composed from:

* Message block: computes a message along an edge between nodes u and v
* Aggregation block: pools all incoming messages from the neighborhood of u
* Update block: combines node representation with the neighborhood info

* With appropriate “readout” block, MPNN can be trained end-to-end for any
of the 3 graph tasks (node, link, or graph —level prediction)

39

=y
Graph Convolutlons

A Spectral Perspective ¥ 3 |

S

Deep Learning success on Euclidean
domains

Deubt thou the stars are fire,
Deubt that the sun deth move,
Deubt truth te be a liar,

But never doeubt I love...

Text Audio signals

* What geometric structure in images, speech,
video, text, is exploited by CNNs?

41

Key properties of CNNs

C3: f. maps 16@10x10

INPUT gg@ 2fg)a(uztge maps S4: f. maps 16@5x5
32x32 S2: . maps C5: layer .
6@14x14 120 ';S; layer %TPUT
. |
’ Full coanection Gaussian connections
Convolutions Subsampling Convolutions ~ Subsampling Full connection

Convolutional (Translation invariance)

Scale Separation (Compositionality)

Filters localized in space (Deformation Stability)

O (1) parameters per layer (independent of input image size n)
0 (n) complexity per layer (filtering done in the spatial domain)

[llustration credit : 42

https://arxiv.org/abs/1603.07285

Key propertles Of C | Can we extend convolutions

to the graph domain?

How do the GNNs we just saw
N fitinto this?

& Convolutional (Translation invariance)

®&Scale Separation (Compositionality)

©Filters localized in space (Deformation Stability)

@0(1) parameters per layer (independent of input image size n)
@O(n) complexity per layer (filtering done in the spatial domain)

43

https://arxiv.org/abs/1603.07285

Convolutions

expresses how the shape of one is modified by
the other

* Amount of overlap of one function as itis
shifted over another

* Mathematical operation on two functions that f |_|
AN

f*g

* This makes them great feature extractors via s Y
template matching a4

T T T T T T T | I I
]-.: :ﬂneaunderf(:p@-tj'
. f(x)

: : : : : : 9(t-1)
05_ (f*gn)

&t 44

https://en.wikipedia.org/wiki/Convolution

Convolutions

* Convolution as template matching:

hi™t =w’ x b

— ¢
= 2 {wl, hiy)
VS

—Zw he

JEN;

Illustration cre

dit:

45

https://arxiv.org/abs/1603.07285

Convolutions & the Fourier Transform

e The Convolution Theorem states that the Fourier transform of the
convolution of two functions is the pointwise product of their
Fourier transforms:

F(w*h) = F(w)® F(h) = wxh=F Y(F(w)® F(h))

* In general, the Fourier transform has 0 (n?) complexity, but if the
domain is a grid, then the complexity can be reduced to
O(nlogn) with FFT

46

Convolutions & the Fourier Transform

* FT decomposes a sighal into frequency components

* A mapping from “time domain” to “frequency” domain...
* ... butwait-what do these even mean on a static graph?

* Our signals are defined over nodes instead

4 y—02 yj = 0.6

t=1 t=3 .

https://en.wikipedia.org/wiki/Convolution

GNNs and graph convolutions

* Intuition: The aggregation over node neighbors in a GNN is akin to
a “center-surround” convolutional filter

12
O 8
3 O

* Theory (at a high-level): GNNs can be derived as a generalization
of convolutions to the graph domain, based on graph Fourier
analysis

48

http://web.stanford.edu/class/cs224w/

Hamilton, 2020. “Graph Representation Learning”

Graph Fourier analysis

* Fact 1: We can define the Laplacian operator fora graph G = (V,E, A)

ldentity ~ Adjacency matrix

Symmetric
normalized -: I— D™
A

Laplacian
P .

Diagonal
degree matrix

AD 2

N[~

sym

Intuition: This Laplacian operator measures how much a signal
differs between a node and its immediate neighborhood

49

Hamilton, 2020. “Graph Representation Learning”

Graph Fourier analysis

* Fact 1: We can define the Laplacian operator fora graph G = (V,E, A)

ldentity ~ Adjacency matrix

Symmetric : Diagonal
normalized -= I-D 2AD 2

degree matrix

Laplacian _ ,
— 1 —- Symmetric normalized

adjacency matrix

Intuition: This Laplacian operator measures how much a signal
differs between a node and its immediate neighborhood

50

Hamilton, 2020. “Graph Representation Learning”

Graph Fourier analysis

* Fact 1: We can define the Laplacian operator fora graph G = (V,E, A)

Symmetric

1 1 XUl — X{({U
normalized -= I-D 2AD =2 -: E [] []
Laplacian ~IT_ A veN (u) v d“d"’

o Syt Multiplying a node signal

x € R% by the Laplacian

Intuition: This Laplacian operator measures how much a signal
differs between a node and its immediate neighborhood

51

Hamilton, 2020. “Graph Representation Learning”

Graph Fourier analysis

* Fact 2: The (generalized) eigenfunctions of the Laplace operator
on Euclidean space are the Fourier modes (i.e., sinusoidal plane
waves)

Leym = UAU'

* Fourier analysis in Euclidean space involves projecting an input
signhal onto the eigenbasis of the Laplace operator

52

Hamilton, 2020. “Graph Representation Learning”

Graph Fourier analysis

* Key idea: Define the graph Fourier transform (GFT) by representing
a signal in the eigenbasis of the graph Laplacian:

Graph Fourier Multiplication by the inverse Laplacian eigenvectors.

transform (GFT) _ :- where Lsym — UAUT
of a signal
= Ux

x € RVlonthe | X = GFT_l ()A() Inverse graph Fourier transform
nodes of graph

Key interpretation:

Laplacian eigenvectors = Fourier basis
Laplacian eigenvalues = Frequencies

53

Hamilton, 2020. “Graph Representation Learning”

Graph Fourier analysis

* Key idea: Define the graph Fourier transform (GFT) by representing
a signal in the eigenbasis of the graph Laplacian:

Graph Fourier Multiplication by the inverse Laplacian eigenvectors

transform (GFT) __- where Lsym — UAUT

x = GFT™ (Inverse graph Fourier transform

* A graph convolution can then be defined by element-wise
multiplication in the graph Fourier domain:

C luti f Element-wise multiplication between
. ONVOTHHON 21 9 - -) GFT of the signal and a filter
signalx € RVl by

Graph Fourier analysis: Examples

+1
-1
—T 0 +m

First eigenvectors of ring graph Laplacian = classical Fourier basis

First eigenvectors of the Minnesota road network Laplacian

55

https://ieeexplore.ieee.org/document/7974879

Hamilton, 2020. “Graph Representation Learning”

Connecting Spectral Convolutions and GNNs

* In practice, we can define graph convolutions as multiplications
by polynomials of the (hormalized) adjacency matrix, since

P(Aym)| = Up' (AU~ where Ly = UAU ™

Any polynomial of the adjacency matrix can be
simultaneously diagonalized (i.e., share the same
eigenvectors) with the Laplacian

56

Hamilton, 2020. “Graph Representation Learning”

Connecting Spectral Convolutions and
GNNS

* In practice, we can define graph convolutions as multiplications by
polynomials of the (hormalized) adjacency matrix, since

p(Agym) = Up/(A) U™ where Ly, = UAU ™!

- - U

Multiplying a signal by a polynomial of the adjacency matrix is equivalent to
multiplying the graph Fourier transform of that signal

by a diagonal matrix (i.e. performing an elementwise multiplication)

and then performing an inverse graph Fourier transform -

Hamilton, 2020. “Graph Representation Learning”

Connecting Spectral Convolutions and
GNNs

* In practice, we can define graph convolutions as multiplications by
polynomials of the (hormalized) adjacency matrix, since

p(Agym) = Up/(A) U™ where Ly, = UAU ™!
=D(Agym)X = Up (AU 'x

Multiplying by a polynomial of the adjacency matrix p(ASym)X

gives a valid graph convolution X*gf =U (}A(X diag(f'))

Message-passing

Spectral

Comparing the perspectives: Basic
MPNN

Conv

veN (u)

Z h(F—1) b(k))

S

sum of neighbor’s previous
layer embeddings

TILV (u)

k)| (k). (k—1 (k)
hg I — (Wse]f 1& <Wneigh
k'™ layer previous layer
embedding non-linearity embedding of u
of v (e.g., ReLl)
k+1 k
hi) a(Whﬁ) + W
(k+1) k k
H (A +DHW®)

o

X

W(k)) \ ~ Graph signal to convolve: node embeddings

Degree 1 polynomialfilterp(ASym) : 1-hop 59

Summary of Convolutional View

* GNNs can be derived as a generalization of convolutions to the
graph domain, based on graph Fourier analysis

* Multiplying by a polynomial of the adjacency matrix gives a valid
graph convolution

* We can do convolutions also in the spectral domain, instead of the
graph domain, however without “tricks” it is too expensive

* Both graph domain and spectral domain filtering is an active area of
research

60

Graph Isomorphlsrn and
Expressivity .

What functions can GNNs represent? —

Weisleiler-Lehman algorithm

* The WL algorithm is used to extract a discrete feature vector for a
graph, which can be used to test if two graphs are isomorphic

WL Algorithm

Initialize each node by the same color.
Fort=1..T:
* For each node:
 New label «

hash (multiset of labels in

local neighborhood)
Represent graph has multiset of labels
obtained after T iterations

hash (@, {0, 85) hash(®, 70, 05)
haai\(.) e.].}.s\; }\&5"\(,2 , @, 3\}

/%AM\:A:

[llustration credit:

https://geometricdeeplearning.com/

Weisfeiler-Lehman and GNNs

e GNNs can be viewed as a continuous and differentiable version of

the WL test!

WL Coloring Algorithm

Initialize each node with a
discrete label

For each node:
 New label «
hash(multiset of labels in
local neighborhood)

GNN Message Passing

* |nitialize each node with a
continuous embedding

« For each node:
 New embedding «
NN(set of embeddings in
local neighborhood)

63

1-WL Isomorphism Test & Limitations

 Graph isomorphism is hard! _ S
* 1-WL test fails to distinguish some [> <I

pairs of non-isomorphic graphs (e.g,

uuuuuu All messages are {€).€). €} updat
regular graphs) v .
* Avanilla message-passing GNN also \|\><| TN /‘
cannot distinguish such graphs! -

? st l Embeddin
(X3 e 1< @g

[Wlustration credit: [llustration credit:

https://arxiv.org/abs/2003.04078
https://icml2024graphs.ameyavelingker.com/
https://icml2024graphs.ameyavelingker.com/
https://icml2024graphs.ameyavelingker.com/

1-WL Limitations

E Input Graph Input Graph

update All messages are {{€).€).€)}} update

Embeddings Embeddings
\\ (0.10,0.01 - \ /

update All messages are {{), &), G0} update

Embeddings Embeddings
ii % B ”)H@

Figure 4: Message passing GNNs cannot distinguish any pair of regular graphs
with the same degree and size even if they are not isomorphic.

() (f)

Figure 5: Although these graphs are not isomorphic or regular, GNNs cannot
distinguish (a) from (b), (c) from (d), and (e) from (f)

[llustration credit:

65

https://arxiv.org/abs/2003.04078

How to Enhance Expressivity?

* Most standard GNNs limited by 1-WL graph isomorphism test

* Ways to improve GNN expressivity:

* Add features: Easiest way -- even random features breaks symmetries &
distinguish/count local structures
* Positional/structural encodings! More on that later...

* Modulate message-passing: E.g. anisotropic message aggregation like
GAT/attention

* Modify underlying graph: k-GNNs, graph transformers, expander graphs,
graph rewiring strategies

66

More Resources

* Distill: Intro to GNNs, Convolutions on graphs.
* Excellent introductory material with interactive visualizations

* PyG Docs: Colab notebooks & video tutorials
* More content available in the main documentation directory

* ICML 2024 Graph Learning Tutorial

* Similar introductory content, but (a) less applications & no coding
content, but (b) goes deeper into specific challenges in graph learning

* William L. Hamilton’s GRL book, GRL keynote talk
* Geometric Deep Learning Course: Book, Keynote, Lectures

67

https://distill.pub/2021/gnn-intro/
https://distill.pub/2021/understanding-gnns/
https://pytorch-geometric.readthedocs.io/en/latest/get_started/colabs.html
https://pytorch-geometric.readthedocs.io/en/latest/index.html
https://icml.cc/virtual/2024/tutorial/35233
https://www.cs.mcgill.ca/~wlh/grl_book/files/GRL_Book.pdf
https://www.cs.mcgill.ca/~wlh/grl_book/files/hamilton_grl_talk.mp4
https://geometricdeeplearning.com/

Live coding:
Building
GNNs with
PyG

Link]

https://colab.research.google.com/drive/11M2S4fPrsZhv_h_d0xBkk6NuQmO4dRPE?usp=sharing

Part I1 TRy
Challenges in Graph Learnlng

(and How to Solve Them)

' ' k;.\.\\‘q .

Part II: Outline

Caveats of Message

Passing Neural

Networks
e Under-reaching * Rewiring
e Over-smoothing e Advanced GNNs

e Over-squashing e Graph Transformers

Message Passing Neural
Networks (MPNN)

* Features at each node x;, maybe also each edge ¢;_, ;
* Message from node j to node i: m;_,; = fo (X}, Xx;, €j,;)

 New features x;” = fv(xi, 2;mj;) forsome NN f,
J

—

Some
Parameters

1. Graph Diameter (d)

2. Problem Radius (r = d)

* Local dependencies
* Long range dependencies

3. Reach capacity of GNN (k)

* Number of layers in MPNNs

Figure from: https://en.wikipedia.org/wiki/Diameter_(graph_theory)

72

Under-
reaching

Long-range 3D atomic contact not captured by the
structure
[Dwivedi et al., 2022]

w N

Under-reaching

* Problem
* Nodes can only access information within k hops (limited Distance = 11

receptive field). /\
* Information cannot propagate beyond k GNN layers.

* Implications
* Long-range dependencies are missed.

* r often grows with graph size - required k scales with graph.
* Solution

* Stack more layers (k > r) to enable information exchange across

distant nodes. | 24
S SpOiler alert: there are some Consequences Figure from: https://www.wolfram.com/language/12/molecular-structure-and-

computation/molecule-graphs.html.en

Over-smoothing

With many stacked layers, node embeddings become indistinguishable.

\

. z |hE —hk |- 0 ask - « \
(WV)EE /

o 4

75

Over-smoothing in GNNs

* Problem
» Stacking many GNN layers > node embeddings become
indistinguishable
 Cause
* Too much mixing of information

* Depends on:
* Graph connectivity (G)

* GNN architecture
* Key properties
* Independent of problem radius (not about k <r)
. 2 |hEk — Rk 150 ask - x
* Leads to convergence of embeddings across all nodes (W)EE

[J Takeaway Figure and equation from: ICML 2024 tutor ial on Graph Learning
* More layers # more expressive - risk of over-smoothing

76

Some over-smoothing

X ‘Laz/er > v
luti
gy
Skip Connection n
* Architectural techniques .
------ - -----------PaeroIm---------»----:---,
X $ X€ X

features across layers

* Normalization layers (BatchNorm, GraphNorm,
PairNorm) & Regularization - stabilize training

* Jumping knowledge networks > adaptively combine
representations from different layers 7\ | | — [j

e — _——

* Residual / skip connections - preserve raw node X §
l graph conv' center rescale

* Alternative designs

* Attention mechanisms - selective information thsar Bk
propagation

* Hybrid Graph Filters > Low pass filters cause

oversmoothing, combine them with band-pass filters
(Graph Scattering)

concat/avg /~,
>

Figure sources: 1. Li, Yaoman, and Irwin King. "Autograph: Automated graph neural network." International conference on neural information processing.
2. Zhao, Lingxiao, and Leman Akoglu. "Pairnorm: Tackling oversmoothing in gnns. (ICLR 202)

3. Eschenburg, et al. "Learning cortical parcellations using graph neural networks." Frontiers in neuroscience 15

4. Velickovi¢, Petar, et al. "Graph attention networks."

Geometric scattering

 Can we handle over-smoothing and
under-reaching by better filter design?

* GCN filters: Low-pass filtering only

* GS based on graph diffusion wavelets :

* Filters based on powers 2! of the the lazy random walk matrix P := 5(

* Subtract these low-pass filters at different scales

k—
« Capture information at different frequency bands ¥y = P? P

* Larger receptive fields resolve under-reaching
 Band-pass filtering avoids over-smoothing

* Hybrid scattering combines both low- and
band-pass filters

1

2k:

Figures from: Fredrick Wenkel PhD thesis

I,+WD™)

78

Over-squashing

A
%R

Information bottlenecks appear in the
message passing process

Number of nodes in the receptive field
increases exponentially with the depth

79

Figures from: 1. Alon et al. "On the bottleneck of graph neural networks and its practical implications.”
2.:1CML 2024 tutorial on Graph Learning

Over-squashing

* Problem
* Number of nodes in the receptive field grows exponentially with depth.
* Information from many distant nodes must be compressed into fixed-size node
embeddings.
* Too much information needs to pass through a single node or a small number of nodes,

causing information bottlenecks.
* Effects
* Information from distant nodes is lost or distorted.
* Long-range dependencies fail. % i

* Key takeaway
* Even with enough layers, bottlenecks limit effective information flow.

Solutions to over-squashing

* Graph rewiring
* Add edges/nodes to bypass bottlenecks (e.g.,
curvature-based, spectral, or diffusion-based
rewiring).
* Improves connectivity and reduces path lengths.
* Model capacity

* Increase hidden dimension size
> more room to encode distant information. Spatial

* Use attention to prioritize important signals. message passing @

 Advanced Architectures A “
* Higher order GNNs.
* Combining with spectral methods.
 Graph Transformers ...

Spectral
filter

81

Figures from: 1. Topping, Jake, et al. "Understanding over-squashing and bottlenecks on graphs via curvature."
2. : Geisler, Simon Markus, et al. "Spatio-spectral graph neural networks."

Graph rewiring

Idea
* Modify graph edges to improve message passing.

* Helps connect distant nodes, reduce bottlenecks, and
highlight relevant interactions.

Types of Rewiring

* Spatial: add edges locally (within k-hop).

 Spectral: add edges based on global connectivity measures. S
Static vs Dynamic

* Static: rewiring fixed before training.

* Dynamic: edges updated during training, adapt to task.
Benefit

* Mitigates over-squashing by improving long-range

communication. (2) Clique (> 0) (b) Grid (= 0) (c) Tree (< 0)
82

Figures from: 1 & 2. Topping, Jake, et al. "Understanding over-squashing and bottlenecks on graphs via curvature."

Advanced GNNs

Global node o

Hypernodes o/&Q _____

Node to

. \ ernoae
e Higher order GNNs " edges
 Hierarchical GNNs Nodes
. . Edge types
* Adaptive Message Passing i
[]
(©) 5 ¢ (@ 5 6 5 6
1 1 ééj 1
4 O\O 4 O 4
OO O O
2 3 7 2 3 7 2 3 7
Standard MP (£=1,2) Adaptive MP (£=1) Adaptive MP (£=2)
83

Figures from: 1. https://distill.pub/2021/gnn-intro/
2. :Errica, Federico, et al. "Adaptive message passing: A general framework to mitigate oversmoothing, oversquashing, and underreaching."

Higher Order GNNs

* Motivation
 Standard GNNs operate on pairs of nodes (edges).
* Higher-order GNNs extend message passing to k-tuples of nodes.
* Capturesricher relational structures (motifs, subgraphs, hyperedges).

« Examples
 2-WL GNNs: work on pairs of nodes, more expressive than standard MPNNSs.
 Subgraph GNNSs: operate on induced subgraphs around nodes or edges.

* Key advantage

* Higher expressive power > can distinguish graphs that standard GNNs cannot (e.g.,
certain regular graphs).

* Gives aricher communication channel that bypasses narrow single-edge
bottlenecks.

84

Hierarchical GNNs

* Motivation
* Capture information at different levels of granularity
* From small neighborhoods - larger scale structures

* Methods
* Graph clustering: group nodes into clusters
e Combine original nodes and cluster-level nodes
* Multi-level hierarchy possible (recursive clustering)

* Advantages
* Long-distance nodes become closer in higher levels
* Improves efficiency and long-range information flow

Global node O
Node to

Hypernodes O/&Q
\ hypernode
edges
Nodes

85

Adaptive GNNs

* Motivation
* Not all nodes need to send/receive messages in every

round.
* Each node can act as sender, receiver, both, or nothing.
* Methods O—
* Train an auxiliary GNN to decide when to pass messages. HalfHop
* Introduce half-hop nodes for flexible communication. v
O r
. Advantages slow node

* Receptive fields grow adaptively and controllably.

 Enables deeper GNNs while limiting unnecessary message
passing.
* Focuses long-path communication only where needed.

86

Figure from: Azabou, Mehdi, et al. "Half-hop: A graph upsampling approach for slowing down message passing."

Summary of challenges

* Propagation limits

* Information flows only along graph edges > hard to
capture long-range dependencies

e Solution: deeper GNNs (more layers)

* Over-smoothing

* Too many layers > node features become
indistinguishable

* Solutions: residual/skip connections, normalization,
jumping knowledge, alternative designs
* Over-squashing
 Graph bottlenecks restrict information flow

* Large receptive fields » information over-compressed
into embeddings

* Solutions: graph rewiring, larger hidden dimensions,
advanced architectures (e.g., higher-order, attention-
based)

/5 UAS
Graph Transformers |

An alternative to MPNNs? , ,

* Decoupling graph structure from the computation graph

Graph

e i H RO

Graph Neural Networks I
- 1 o I O S
— : S R %
I
i 7
' |
, Ry
I nodej: : v
| g - \
I -
i I
i
1

adjacency matrix observed graph attention matrix latent graph

Figure from: How to Build Graph Transformers with O(N) Complexity, Qitian Wu, Medium blog post, with some modification

Transformers

 LLM era: Next token prediction based on a past
context window
* Key element: “Attention is All You Need!”

All pair attention mechanism!

Sequence of words: aka line graph

Dense attention

Figure from: 1. Vaswani et al. “Attention is All you Need”
2. Large Language Models: BERT — Bidirectional Encoder Representations from Transformer, Medium blog post by Vyacheslav Efimov

position
embeddings

segment
embeddings

token
embeddings

tokens

input

Output
Probabilities

..
K) . X Feed
Multi-Head Attention Forward
Linear e 1 ~\ (Add & Norm ;
: (—LAdd&Norm) Multi-Head
: Feed Attention
Concat : Forward T 7 Nx
Il N—
- : N Add & Norm
Scaled Dot-Product J& h —{Add & Norm] Masked
Attention < < Multi-Head Multi-Head
|. l l Attention Attention
POt i cfb : L - L -
: : : ; i] J —')
: [Lmear [Lmear [Lmear :
i Positional A Positional
i ! r r i Encoding 2 ¢ Encoding
Input Output
Vi K Q Embedding Embedding
...................................... nputs Outputs
(shifted right)
EO E'I EZ .o Ek Eko‘l EkoZ Ekd Ekomﬂ Ekli
+ + + + + + + + + + +
Ea Ea Ea Ea Ea Es Es Es Es
+ + + + + + + + + + +
Ecis Ea Ea. Ea Eser Es Ee. Es. Eser
CLS A A <o A« SEP B B: B. SEP

I SRR o

Graph
Transformers

* Similar Attention
mechanism
* Tokens:
* Nodes
* Edges
* Subgraphs

Figure from: Sun, Chengcheng, et al. "Attention-based graph neural networks: a survey." Artificial intelligence 2023

5

:'//CGraph Embeddin@

|)
i C Readout)
| 1

| (Node Embedding)

L
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Laplacian Encoding

) : :
—(Add & Norm) Centrality Encoding

Relation Encoding

A
—(Add & Norm)
Multi-Head
Self-Attention
//
+
Positional
Embedding
N Features A

91

Message Passing vs. Graph Transformers

Message Passing Graph Transformers

Updates across edges of input graph Use global attention

All-pair attention, no information

bottleneck

Captures inductive bias from input
graph topology

Efficient computation: O(nd? + md) Long-range modelling

X Difficulty with long-range X Loss of inductive bias from graph

dependencies X Inefficient computation: O (nd? + n*d)

° ” 2
X Oversmoothing, oversquashing Usually in graphs m < n

92

Nn: number of nodes, M: number of edges, d: hidden dimension of the network

Message Passing vs. Graph Transformers

Message Passing Graph Transformers

Updates across edges of input graph Use global attention

Captures inductive bias from input All-pair attention, no information

graph topology
Efficient computation: O(nd? + md)

[X Loss of inductive bias from graph]

X Inefficient computation: 0 (nd? + n®d)
e Usually in graphs m « n?

X Difficulty with long-range

dependencies

X Oversmoothing, oversquashing

Nn: number of nodes, M: number of edges, d: hidden dimension of the network

bottleneck Positional and
structural encodings
Long-range modelling

Positional/
Structural
Encodings

Figure from: GraphGPS: Navigating Graph Transformers, blog post by Michael Galkin

O
O
- \
\ ?@ ’(;e/ // \\
\Oc’;o(?:fo;_ I// \
. of
v’g\}{’&eﬂ\ ‘\ /
\ yd O
——————— - -O celative Pede/
l L [PE \\:\ edae Peax‘t:(f‘
g oo | == ‘

‘coordinate |
. |
within a 3raplr\ I

94

Positional Encodings (PE) for Sequences

C ENCODER #1)
A A A
(ENCODER #0
A

\ 5

Jf’#?th

i

200

WJ)h Il

0
| Word Embedding Dimension

EMBEDDING

WITH TIME
E PE(pos 5i) = sin(pos/10000%/ 4)
POSTIONA. [[[] [T T 1] t [T 1]
I : : PE o4 i1 1) = c0s(pos/10000%/ 4roret
EMBEDDINGS xi [| | || x2 [xs Il
INPUT Je suis étudiant

PEs borrowed from NLP, where they denote the position of each word, making the embeddings of

closer-by words more similar
95

Figure from: Jay Alammar. The Illustrated Transformer

https://jalammar.github.io/illustrated-transformer/
https://jalammar.github.io/illustrated-transformer/

Graph Positional and

Structural Encodings A

* Can provably improve expressive
power of GNNs

* Organized into 3 categories
based on their locality:

 Local
 Global
 Relative

\\
. // \\
* / \
\?@)(,9/ / \
[l \
& >
N coo X o~ / \

N)
& xS

\

] Lu

:7'050\[PE
. coordb'\o\‘te" |
within a groph :

P S

2

Ve

O//

_______ B N O relotive PES

&
O

96

Laplacian Eigenvectors and Eigenvalues

I, = Laplacian eigenvectors = Fourier basis

Laplacian eigenvalues = Frequencies

0y, = 0_037::, AN 2, =01 .’"b Eigenvector ¢

R t 4 N Ay e colormap
o - o max
/ \ ¥ = 4 /-\ / \ 9 h' l
&8 - ¥ Ty
”.\ AIO = 1.0 l - ‘ 211 =1.0 0
"/“ Y ¥ o - B b d -
“o® - 22 -

2-Q o d
'\ / ‘ -max

illustration: Kreuzer et al. Rethinking Graph Transformers with Spectral Attention, 2021

Belkin and Niyogi. Laplacian eigenmaps for dimensionality reduction and data representation, 2003 7

Many more:

RWSE, HKSE,
ElectrostaticSE

* RWSE: Random walk landing
probabilities after steps:
Diagonal of RW matrix

* HKSE: Represents a Gaussian in
Euclidean space, solves the
diffusion equation

e ElstaticSE: Kernel based on the
electrostatic interaction between
nodes

Figure from: What is Node2Vec?, blog post by Neri Van Otten

98

GPSE

* Graph Positional and Structural
Encoder (GPSE, Cantirk et al.,
2024): A self-supervised learning
of various positional encodings.

* An MPNN leans to generate the
positional encodings from
Gaussian initializations

G = (V,E

e
(}'}{!ﬁ}
X ~ N(0,1)

ok Addition

)

Learnable module X Random features
GPSE training loss BN Batch normalization
D GPSE layer block QG GPSE encodings

A. Graph Positional & Structural Encoder (GPSE) model

—r—

G' =V, E' X, Xe)
—_—

Concatenation

e

Offline precompute

Node features

ole!
3

@

Edge features

|V|xd
QGeR

3;}: After training

MLP heads

freeze weights

& &

Ca R

Positional Encodings
Encodes positional information of
each node in the graph.

LapPE: Laplacian eigenvectors

ElstaticPE: Electrostatic potentials

Structural Encodings

Encodes structural information of
local contexts of each node, or the
global context of the graph.

EigValSE: Laplacian eigenvalues
RWSE: Random walk diagonals
HKdiagSE: Heat kernel diagonals
CycleSE: Cycle counting

B. Self-supervised GPSE training to recover various PSEs

Graph

Transformer
or MPNN

Dataset-specific
prediction tasks

C. Augment any graph dataset with GPSE encodings and train any GNN predictor from scratch

99

n/ |

Graph Transformers: Examples
GT / Graphormer / SAN / GraphGPS ;

= 100

xL
layers

Graph

* The first design by xH
Dwivedi and Bresson,
2021
A A
Qk,l Kkt Ve Vﬂ Bkt
L A A I:A:|) L A A [IL I:A:I)
—] -— .
L 4?@ O«® —wlr><—®
. (%} e {n'} {4}
T aplacian Bivees ay
Graph Transformer Layer i_@_.__’_’_"_?f"_"_‘flf'_‘_’?_‘_f_'_’f‘_’_“_”ﬁ'_'?___? ey ;,“;ef‘;;';‘;’,;: Y

101

Graphormer

At the time SoTlA:
* OGB-LSC graph property
* Open Catalyst NeurlPS’21 Challenge

Positional Encodings used:

* Node centrality

- +
deg— (v;) + Zdeg"‘ (v;)
* Spatial encoding:

h,,(;o) =x; + 2

Ying et al. Do Transformers Really Perform Bad for Graph Representation? NeurIPS 2021

I

[

U1
[MatMuI } V2
SoftMax -
t Uy
1 vs
Scale
t
MatMul |
U1
T | ()
[Lineali [Linear] [Lineari ~—Us
1K VJ v
Us

L@

Node Feature

®

Centrality Encoding

V1 V9 V3 Uy Vs

Spatial Encoding
V1 Vg9 V3 V4 Vs

Edge

Encodi

Us

(%)

V4
VU3

shortest paths distances

* Edge encoding

Az‘j =

_ (hiWq)(hjWk)" l

Vd

enc. edges on a shortest path

N
1
+ bg(v;,v;) T Cijs, Where c;j = v Z ., (wE)?

n=1

102

Spectral Attention Network

Node features X(?)
(0) (0) (0)
Xl,l X1,2 xl,ﬂo
0 0 (0)
Q{ X0 XY A,
(0) (0) (0)
xN.l xN,Z xN,no
N X no
Edge features E(*)
0 0 (0)
BONER B
3
0 0 (0)
] QD Q| D,
1
(0) (0) (0)
EE,I EE,Z EE,eo
E X eo

Fully connect the
(f)

graph
An edge is added to all pairs

of disconnected nodes and
given its own embedding.

The size of the edge embed-
ding dictionary increases by

1, and the number of edges

becomes N2.

NZX(€0+1)

()

Input layers for the
feature

Add an MLP or linear layer
for both the node and edge

features.

MLP

H
O(N)

x'

N x (d —k)

d: hidden dimension

MLP

0(N?)

EM

N%2xd

Kreuzer, Beaini et al. Rethinking Graph Transformers with Spectral Attention, 2021

Concatenate node
features

Concatenate the node
features from the MLP to
those from the LPE.

D

x@

N xd

(i) Apply the main
transformer

Attention between all pairs of
nodes features and the edge
between them. Different
linear projections K, Q, E are
used to compute attention for
real edges and added edges.

K
K'T Transformer
Q! encoders
on the dimension of
E

size |
0(N?)
Prediction Output
layer N xd
103

Rampasek, L., Galkin, M., Dwivedi, V. P., Luu, A. T., Wolf, G., & Beaini, D.
Recipe for a General, Powerful, Scalable Graph Transformer. NeurlPS 2022

GraphGPS

1. Positional and Structural Features

poS?t?onoJ

'Peod: ures

~—
-

RWSE, Laplacian, Signﬁ/e‘t, ete

2. GPS layer: Combine MPNN and Transformer (Global Attention)

MPNN Graph Transformer

Local MESSAgE PASSIng Global attention

——— real edge 104
P, Virtual ep(ge

Message Passing vs. Graph Transformers

Message Passing Graph Transformers

Updates across edges of input graph Use global attention

All-pair attention, no information

bottleneck

Captures inductive bias from input
graph topology

Efficient computation: O(nd? + md) Long-range modelling

X Difficulty with long-range M Loss of inductive bias £]

dependencies X Inefficient computation: O (nd? + n*d)

° ” 2
X Oversmoothing, oversquashing Usually in graphs m < n

105

Nn: number of nodes, M: number of edges, d: hidden dimension of the network

Message Passing vs. Graph Transformers

Message Passing Graph Transformers

Updates across edges of input graph Use global attention

Captures inductive bias from input All-pair attention, no information

graph topology bOttleneCk
Efficient computation: O(nd? + md) Long-range modelling Efficient
x . . . Transformers
X Difficulty with long-range ‘oss-oHnductive-biasfrom-graph
dependencies [)(Inefficient computation: O(nd? + n?d)
. ’ 2
X Oversmoothin , oversquashin Usually in graphs m < n
g q g

106

Nn: number of nodes, M: number of edges, d: hidden dimension of the network

)

/ -
Efficient Graph Transformers: -
Sparse Transformers / Linear Transformeljs / Sa'mpling Y ‘

107
P !

Charformer
(Tay etal,, 2021)

TokenLearner

Perceiver (Ryoo et al., 2021)

(Jaegle et al., 2021)

Transformer-XL
(Dai et al., 2019)

Scaling

Nystromformer
(Xiong et al., 2019)

Memory / Memory

Recurrence .
Downsampling Compressed

Compressive

Transformer,
(Rae et al., 2018)

Set Transformer
(Lee et al,, 2019)

Clusterformer

* Typical transformer has O(N?) dependence

T Roufting (Wang et al., 2020)
; ransformer
thiti - Fur;nel P%ﬁ:ﬂ';‘ggf’!‘g}?r (Royetal, 2020) Reformer
Performer ‘ ransrormer v (Kitaev et al., 2020)
— prohibitive for long sequences or large o @
3 ETC Big Bird
L Rank T £ (Ainslie et al., 2020) (Zaheer et al., 2020)
ow-Rank Transformer)
g ra p h S (Winata etal, 2020) Longformer Swin)
(Beltagy etal 2020) Transformer g Clustered Attention
k (Liu et al., 2020) Sinkhorn (Vyas et al., 2020)
Linformer LOW Ran / Long Short Transformen

(Tay et al., 2020b)

Fixed/Factorized/ :
Random Patterns

e Dense attention — efficient attention

(Wang et al,, 2020b) Kernels Transformer

(zhu et al., 2021)

Adaptive

: Sparse
M Random Feature Attention | Synthesizer
° it (Tayetal, 20200) . CC-Net GShard Transformer
Blockw(lse Trrans)former (Huang et al, 2018) (Lepikhin et al, 2020) (Correia et al, 2019)
Qiu et al., 2019;
Linear
M Transformer Sparse Transformer Sparse (Du?tl;fmm
* Low-rank attention
(Parmar et al., 2018) T Product Key
Axial Transformer (Fedus etal., 2021) Memory
M (Hoetal., 2019) (Lample et al., 2019)
* Sampling based
I n Scaling Transformer
(Jaszczur et al,, 2021)
[J

Different design

Y. Tay, M. Dehghani, D. Bahri, and D. Metzler. Efficient Transformers: A

® Many eff|C|ent attentlon meChan|SmS Survey. ACM Computing Survey, volume 55. 2022
proposed for sequence transformers

108

 Sparse patterns

 Exphormer (Shirzad et al., 2023) > efficient sparse
attention pattern

 Low-rank / efficient attention
* Nodeformer (Wu et al., 2023) - low-rank attention
ff‘ ° using kernelized Gumbel-Softmax. Inspired by
E lClent Performer (Choromanski et al., 2021)
* Difformer ~> diffusion-based attention

TranSfO rmefs * Polynormer - polynomial + linear attention
f()[’ G[‘&p]]b’ * Sampling-based

* Gophormer (Zhao et al., 2021) > neighbor sampling
strategy

* Spexphormer (Shirzad et al., 2024) > Importance
Sampling + Exphormer

* Alternative designs

* NAGphormer (Chen et al., 2022) > k-hop
neighborhood summary

* And many more...
109

Sparse attention pattern > reduces computation

Linear complexity with respect to the graph size

EXphOrmer Virtual nodes - shrink graph diameter, enable long-range communication

Expander graphs > prevent over-squashing by improving information flow

110

Video source: https://research.google/blog/exphormer-scaling-transformers-for-graph-structured-data/

The global attention layer of NodeFormer

-

Q(k) — WQZ(k), K& — WKZ(k), vk — sz(k)

Nodeformer D — g+ (@ ((R%)'1)

Why Attention is Quadratic _ y

QK"

Att(Q' K’ V) = softmax | — |V 3(-) <1

Vg & K® KW | =

Q,K,V e R™ % where n= number of nodes/tokens. N ﬂ — . m x 1
/ a / m
Computing QK " gives an nxn matrix > 0 (n?d). Wo 3()
Linear Attention z® :> Q¥ ’:(> Q¥ \ z+1)
Att(Q K/ V) = ¢(@)(p(K) V) NxE F SEs . Nk X \ N xd
X

Replace softmax with kernel feature map ¢(-). % v (¥ S5
Avoids explicit nXn matrix. m X d

111
Complexity: O(nd?)~ linear in n.

Figures from: How to Build Graph Transformers with O(N) Complexity, Qitian Wu, Medium blog post

Hop-to-token: convert k-hop neighborhoods into tokens.

Summarization: aggregate all nodes within distance k into a single

NAGphOrmer embedding.

Attention: model interactions between different hop-level

embeddings.

e N /

’ Transformer backbone \ Attention-based)

Prediction labels readout layer

| |
?

(Multilayer perceptron)
?

Output

R\

(Attention layer

(Attention-based readout layer} T
1 1 [1

(Transformer encoder I

000~ 1.

. T (A '
(Linear projection) P i
A

o T o o o e E E—
— o o o o o o e o

e—em e e e = e = == === === —=—

T

o e mm o o o o o o o e o o o o

112

Message Passing vs. Graph Transformers

Message Passing Graph Transformers

Updates across edges of input graph Use global attention

Captures inductive bias from input All-pair attention, no information

graph topology bottleneck

Efficient computation: O(nd? + md) Long-range modelling

X Difficulty with long-range x—Less—ef—deetW%bws—ﬁﬂem—gpaph
dependencies X Inefficient computation: O (nd? + nd)

- 2
X Oversmoothing, oversquashing * Usually in graphs m < n

113

Nn: number of nodes, M: number of edges, d: hidden dimension of the network

Message Passing vs. Graph Transformers

Message Passing Graph Transformers

Updates across edges of input graph Use global attention

Captures inductive bias from input All-pair attention, no information
graph topology bottleneck

Efficient computation: O(nd? + md) Long-range modelling

X Difficulty with long-range M T oss of inductive bias &]
dependencies x—Ineﬁﬁe}eﬁt—eempafe&Heﬁ—Q@Md%

- 2
X Oversmoothing, oversquashing * Usually in graphs m < n

114

Nn: number of nodes, M: number of edges, d: hidden dimension of the network

Graph Transformers in

Industry

* KumoRFM: A Large Relational
Foundation Model

* For large scale tabular graphs

* Generalizable for many different
tasks

Mo

What will user buy next? Will user churn soon? Is transaction fraudulent?
“a -~
Will clinic have high appointment demand? Is patient at risk of hospital readmission?
; w W Predictions
.- Vie
an V"f Relational Foundation Model

#» Explanations

P $ M,

n e 27w -
RV el

i 1

Evaluation

~
[,‘zk\a-n _'//n
»

uEsr idie—e Usor-d customer_id o oonaee i patient_id $—e Patient-id
item_id receiver.id visit_id
i doctor_id
. l patient_id
user_id . . customer_id visit_id ;
item id e—e item-id branch id e—e branch_id doctor.id e—e doctor_id

(a) E-Commerce (b) Finance (c) Health-Care

Key capabilities of Relational Foundation Models.

115

Summary

= i B N
Revolution oo : O 1 o ;
« Bring the success of Transformers to graph learning e Eth ~N
* Decoupling graph structure from the computation grapn e e e e
Challenges positional \
 Loss of inductive bias Features ’
* Need positional and structural encodings gﬁwse. Laplacon, Sty e\ /"
 Scalability issues
 Graphs are large 2 require efficient Transformers
* Explore alternative designs
* Hybrid Approaches
* Combine GNN message passing with Transformer
attention
MPNN Graph Transformer

Industry Impact

* Deployed in large-scale systems (e.g., KumoRFM)

Local message Passing Global attention

real edge

. wtelohe 116

More Resources

* Kumo Al: Graph Transformers blog post
* Excellent introductory material with interactive visualizations

* Google Research: Blog post on Exphormer model
* ICML 2024 Graph Learning Tutorial

* Similar introductory content, but (a) less applications & no coding
content, but (b) goes deeper into specific challenges in graph learning

* William L. Hamilton’s GRL book, GRL keynote talk
* Geometric Deep Learning Course: Book, Keynote, Lectures

117

https://kumo.ai/research/introduction-to-graph-transformers/
https://icml.cc/virtual/2024/tutorial/35233
https://www.cs.mcgill.ca/~wlh/grl_book/files/GRL_Book.pdf
https://www.cs.mcgill.ca/~wlh/grl_book/files/hamilton_grl_talk.mp4
https://geometricdeeplearning.com/

Live coding:
Building
Graph
Transformers

Link]

https://colab.research.google.com/drive/1xcpv9z6cIqkbtUoz3CGrI90wrpOHNwB-?usp=sharing

Part 11 A/
Beyond Message Passmg

New Research Areas & Applications .
. ‘\‘ - ¢
P

Part I1I: Outline

1. Translational and Rotational Symmetries

2. Geometric Generative Modeling
1. Background
2. Graph Generation
3. Protein Design Problem

120

/

,
/

Roto-Translational Symmetrles

Invariance & Equivariance over SO(3)/SEE3)
b

121
- S

Data invariance & equivariance

Invariance

Computer

Graph
Learning

Vision

:

reflect l

rotate l

e

p

?

*ﬁfi

“Cat n

A

wrgy

E tomization

a
mn:rgy

Equivariance

' segment
>

reflect l

reﬂect

>
segment

predict

Y

force field

l rotate

predict
>
force field ,'

122

Data invariance & equivariance

Computer

Graph
Learning

Vision

Invariance

How to maintain invariance or equivariance with

rotate l

e

-
?

d

Equivariance

X — Yy — Z coordinates as features?

)
\

Eatomization

%rgy

rotate l

p
9 <

predict

force field

predict

)

l rotate
?

force field

y
> k’_‘

123

GNN equivariance w.r.t.
specific transformations

* Equivariant models in some
group of transformations (in
addition to permutations)

e rotations:
SO(3), SO(2), ...

e rotations + translations:
SE(3)

e rotations + translations +

reflections:
E(n)

Figure 1. Example of rotation equivariance on a graph with a graph
neural network ¢

P(Ty(x)) = Sy(o(x))

124

Figure from: Satorras et al. E(n) Equivariant Graph Neural Networks. ICML 2021

E(n) Equivariant GNN

Equivariant to: GNN E(n)-GNN
* rotations, translations,

. . Relative Squared Position \
reflections and permutations

mi,j = ¢e(hj[9 hj[9 a'J) miJ = ¢e(h,'l’ hjl’ | | x,‘[- Xj[| |2 ’ aij)
) L Z e in+] =x'+C 2 (x! - x.1)¢x(m,-,)
Applied to tasks such as: jeA) e
: . A7
e Simulation of N-body system /' = ¢,/ m) position Update ™ = D, ™
JEN (D)

dynamics
* |In Quantum Chemistry (QM9)

hf“ = ¢h(hil’ m;)

125

Figure from: Satorras et al. E(n) Equivariant Graph Neural Networks. ICML 2021

SE(3)-Transformer

Step 1: Get nearest neighbours and relative positions

Step 2: Get SO(3)-equivariant weight matrices

% 98

Clebsch- Radial Neural Spherical
Gordon Coeff. Network Harmonics
Lk Zk(” x
$H) Yim | —

_=Jm P " \Tlel

J

2V
Matrix W consists of blocks mapping between degrees

W(e) = W ({QS’;,, e, Yom ()])
HmH Jm .k

* Spherical harmonics: Orthonormal basis for rotations in SO(3). Functions that project 3-
dimensional vectors into spherical tensors (equivariant)

* Radial NN: Uses RBFs to learn distance-based features (invariant)

* Clebsch-Gordon Coefficients: Physics-derived change-of-basis matrices to ensure

invariant and equivariant weights

Figure from: Fuchs et al. SE(3)-Transformers: 3D Roto-Translation Equivariant Attention Networks. NeurlPS 2020

126

SE(3)-Transformer

Step 2: Get SO(3)-equivariant weight matrices E{é
par[l— ‘ W (x) = (I1x[)) W5 (x)
1/2%1/2 | e J
RS & % % T=|t—k|
Clebsch- Radial Neural Spherical where
Gordon Coeff. Network Harmonics
J
Lk ék(H T tk X k
zll) Yl W) = 3 Vo [=
i °J " llall] 0= 2 Yon| g) U

g
Matrix W consists of blocks mapping between degrees

The TFEFN layer output is

W) =W ({ Qb otilel), Yom ()}) C b
(e 121) J e fout,i B 35S W —x) £ .

k>0 j#i

self-interaction

Symbol Meaning
W (x) Kernel mapping between input type k and output type ¢
J Index of equivariant basis kernel (runs from |¢ — k| to ¢ + k)
oF (1) Learnable radial function depending only on distance ||x||
W (x) Basis kernel determined by angular structure
YJm(x/ |x]|) | Spherical harmonic (angular dependence)
& Clebsch—Gordan coefficient matrices, shape (20 + 1) x (2k + 1)
fl’;’l, j Input feature of type k at node j
e Output feature of type ¢ at node ¢
w Scalar self-interaction parameter (for k = ¢, J = 0)
Xj — X; Relative position vector between nodes ¢ and j 127

Figure from: Fuchs et al. SE(3)-Transformers: 3D Roto-Translation Equivariant Attention Networks. NeurlPS 2020

SE(3)-Transformer

Step 2: Get SO(3)-equivariant weight matrices Eif
par[l— ' W(x) = (I1x[)) W5 (x)
1/2x1/2 | M 3
N R R E % % J=|t—k|
Clebsch- Radial Neural Spherical where
Gordon Coeff. Network Harmonics
J
Ok Zk(” H) (z) ok X ok
N W5 (x) = Yim| — .
Jm Pl " el 00 = 2 Yon| [) Qi
g
Matrix W consists of blocks mapping between degrees The TFN layer output is
[1. T
W(z) =W ({ T €7 (1211), Yom (—)}) Pl = w'fl, +ZZW£k —x)
HQ}H Jmk N k>0 j#i

self-interaction

The kernel W% (x) mapping features of type k to type £ is expressed as a sum over basis kernels indexed by J. Each feature
f; a concatenation of vectors of different types. Each basis kernel separates radial dependence, captured by a learnable
functlon ©%(|Ix|]), and angular dependence, determined by spherical harmonics Yj,, and Clebsch-Gordan coefficients
QY T This structure ensures equivariance to rotations. The special case J = 0, k = £ corresponds to a learnable scalar times
the identity, known as self-interaction. Altogether, the roto-translation equivariant layer combines self-interaction with
message passing via equivariant kernels depending on relative positions x; — x;. Note that this design comes from a prior
work Tensor Field Network.

In practice, we have type-0 vectors that are invariant under rotations (like node type) and type-1 vectors that rotate according
to 3D rotation matrices (positions and velocities).

Figure from: Fuchs et al. SE(3)-Transformers: 3D Roto-Translation Equivariant Attention Networks. NeurlPS 2020

fk:

in,j*

128

SE(3)-Transformer

Step 1: Get nearest neighbours and relative positions Step 2: Get SO(3)-equivariant weight matrices
1 2y < 98
q Clebsch- Radial Neural Spherical
Gordon Coeff. Network Harmonics
Lk ék(| ’ T
o) (i
Jm £ |||
AN v J
Matrix W consists of blocks mapping between degrees
e tk d
(o) =W ({Qh (), Yim ()}
||| Jm bk

Step 3: Propagate queries, keys, and values to edges
vij —— WV (Xj — Xi) fj
kij = WK (Xj — xi) fj

q; = Wef;

129

Figure from: Fuchs et al. SE(3)-Transformers: 3D Roto-Translation Equivariant Attention Networks. NeurlPS 2020

SE(3)-Transformer

Step 1: Get nearest neighbours and relative positions

Step 3: Propagate queries, keys, and values to edges
Vz’j - WV (Xj — Xi) fj
kij = WK (Xj — xz-) fj

q; = Wof;

Figure from: Fuchs et al. SE(3)-Transformers: 3D Roto-Translation Equivariant Attention Networks. NeurlPS 2020

Step 2: Get SO(3)-equivariant weight matrices

1/2x1/2 q——T

ESE] o o
o g3
=1/2-1/3] 1

Clebsch- Radial Neural Spherical
Gordon Coeff. Network Harmonics
¢ “(||=ll) (=)

i A e =

Jm LR SANTET

AN J

4
Matrix W consists of blocks mapping between degrees

W(z) = W {QS‘;H., " (llell), Yom (W)}

Jm/.k

Step 4: Compute attention and aggregate

o exp (q;' kij)
Y X en(a/ ki)

S i
Jouti = QijVij

: JENi\i

- -
S, ——-

130

SE(3)-Transformer

A
.

O
i ol
I. o

map

learned per
point features

2% -equivariant
T

B
: :
7~ A
A
— @ |k| Iz o
pool invariant

* Each layer maps from a point cloud to a point cloud (or graph to
graph) while guaranteeing equivariance.

* Attention weights (indicated by line thickness) are invariant w.r.t.
Input rotation, MPNN messages are equivariant

* Mainidea: Obtain invariant/equivariant final node/graph level
representations, apply usual prediction heads

Figure from: Fuchs et al. SE(3)-Transformers: 3D Roto-Translation Equivariant Attention Networ ks. NeurlPS 2020

131

.o =
ke 0 <
E-
S -
S
oF
RS
==

Link]

https://colab.research.google.com/drive/11K6nL4QJ_o-IsArnM3jgb9U36Uz6sIkJ?usp=sharing

Geometric Generative -
Modeling: Background

Fundamentals of Diffusion & Flows

'.‘4-.

Generative Models Beyond Images and Text

Scientific Data Robotics Information Geometry Climate Modeling

g U°
SE(3) invariant SO(2) invariant Fisher-Rao geometry . 52
Protein structure generation Block stacking On the probability Simplex Spherical Geometry

AW

Image credit: Joey Bose

Problem Setting: Generative Modeling

® Unknown: data distribution q

Image credit: Joey Bose

—

o1 W

Problem Setting: Generative Modeling

® Unknown: data distribution q

® Given:samplesXq1 ~ (

Image credit: Joey Bose

Goal: learn a sampler from the unknown q

—

o W

Problem Setting: Generative Modeling

® Unknown: data distribution q
® Given:samplesXq1 ~ (

® | earn: neural network with parameters 0

Generative Model

(e, po)
7 N

Generator Underlying Density

Image credit: Joey Bose

X1 ~(q

Goal: find parameters 0 s.t. pg = q

W -

~

Problem Setting: Generative Modellng

® Coupling: Sample from a noise-data pair (X, X1) <

® Interpolation: Construct interpolation:

Xt — tXl + (1 — t)XO <
. %

® | earn: neural network with parameters —x,
y — (Noise) (Data)
Ze = vi(Zy)

by minimizing

1
mVinJ E(xo,xl)[llxt - Vt(Xt)”z]
0

where Xy = X; — X, are the line directions.

Image credit: https://rectifiedflow.github.io/

Geometric Generatlve '

Modeling: R\
Graph Generation

Generating graph data with desired propertles .

'.‘4-.

Sequential Methods

GraphRNN: Add nodes one by one, each connects to
previous nodes sequentially using an RNN

GRAN: Add nodes (or groups), then decide edges in
parallel with a GNN

TD-Gen: Generate a tree decomposition first, map
each tree node to a subgraph via GraphRNN-style
process

HiGen: Hierarchical generation from coarse to fine,
capturing global structure and local details

hi

EﬁJ J ’T -

N
c @

1 Smpl + Edge-level Updat

Node-level Updat

i@ ‘;
:__1O—0@—0
B o
D@ e

=Y NN

VAE and GAN based Approaches

GraphVAE:

Encode adjacency matrix into a latent space with a
GNN

Decode back to reconstruct the graph

Challenge: permutation invariance = multiple valid
reconstructions

Solution: high-complexity graph matching to align

outputs

MolGAN:
GAN framework for molecular graphs
Learns graph distribution without explicit likelihood

Limitation: training instability, mode collapse issues

P(G|C~}) by graph matching

1(2|G)

po(G|z)

Generator

VB
z ~p(z)

— F
0 B

Molecular graph

Reward «— @
network

ble) “
K* A k ‘

C()
)

O

¥

argmax

—

Permutation Invariant Graph Generation

An example graph w/ 4 nodes. 0 1 1 11 o 1.0 01 [0 0 1 01 [0 0 0 1
1 0 0 O 1 01 1 0 0 1 0 0 0 0 1
1 0 0 O 01 0 O 1 1 0 1 0 0 0 1
1 0 0 0f [0O1T O O [0 O 1 0] |1 1 1 0O
A™ A" A" A™

These 4 distinct adjacency matrices stand for the same graph.

When represented in adjacency matrices, one graph has up to O(n!) distinct representations.

Permutation invariance: how to let generative models treat as “equally likely to happen”?

0(A™) =po(A™) = pe(A™) = -
po(A) = pg(PAP') VP €S,

Image credit: https://giyan98.github.io/blog/2025/gen-graph

N B~

Permutation Invariant Graph Generation

Forward process: corrupt data with noise.
No learnable parameters.

i 50 8 D 58

Reverse process: recover data from noise.
AT ~ N(0,1)
Denoising model is learnable.

AOdiata)ATNNOI

| o = N w
=

|
N

Ao ~ Do <

* Pipeline of denoising generative models (flow matching / diffusion) on graph data.

Image credit: https://giyan98.github.io/blog/2025/gen-graph

WA

Permutation Invariant Graph Generation

Theorem 1. Ifs : RY*N — RN*N s g permutation equivariant function,
then the scalar function f; = f’y[O 4 (s(X),dX)p + C is permutation

invariant, where (A, B)r = tr(A' B) is the Frobenius inner product,
710, A] is any curve from0 = {0}y« n to A, and C € R is a constant.

* For generative models, we use the score function s(X) = Vlogp(X).

Niu et al., Permutation invariant graph generation via score-based generative modeling. (AISTATS 2020)

Diffusion and Score Models

Forward |
SDE dxt — ft(xt)dt + gtth Data — Noise
Reverse
— 5 _ |
SDE dx; = (fe(x¢) —[gt Vlogpt])dt + g;dw; Noise — Data
Forward SDE (data — noise)
The Fokker-Planck Equation %(0) dx = £(x, 1)t + g(t)dw

_ 1
0ipr = —div(py /) + > Vep,

The Score!

score function

dx = [f((x,t) — ¢ & log p; (x

Reverse SDE (noise — data)

C—

dt + g(t)dw

Sohl-Dickstein et al., Deep unsupervised learning using nonequilibrium thermodynamics. (ICML 2015)
Ho et at., Denoising Diffusion Probabilistic Models. (NeurlPS 2020)

Song et al., Score-Based Generative Modeling through Stochastic Differential Equations. (ICLR 2021)

3,1 NN

Permutation Invariant Graph Generation

Theorem 1. Ifs : RY*N — RN*N s g permutation equivariant function,
then the scalar function fs = fv[O 4 (s(X),dX)p + C is permutation

invariant, where (A, B)r = tr(A' B) is the Frobenius inner product,
710, A] is any curve from0 = {0}y« n to A, and C € R is a constant.

* For generative models, we use the score function s(X) = Vlogp(X).

* The (implicit) induced density function defined below is permutation invariant!

logpo(4) = [830, dX) £ loxpa(0).

Niu et al., Permutation invariant graph generation via score-based generative modeling. (AISTATS 2020)

[N N

Permutation Invariant Graph Generation

* Open question: does it hinder or boost performance for graph generative
models?
Recent counter-examples: AlphaFold 3, DiffAlign, SwinGNN, etc.

* AlphaFold 3: “The diffusion module operates directly on raw atom coordinates,
and on a coarse abstract token representation, without rotational frames or
any equivariant processing.”

SN N

More Resources

* UvA GeDL: Introduction to group equivariant deep learning
* Excellent lecture notes & resources

 Fabian Fuchs: AlphaFold 2 & Equivariance

* AlchemyBio: Deconstructing SE(3)-Transformer
* Very in-depth into the invariant/equivariant tools discussed

* LoG 2024: Geometric Generative Models Tutorial
* Avery comprehensive tutorial our GGM notes are based on - goes into
derivations of diffusion, flows and molecular applications
* Also has additional coding tutorials!

* Several extensive blog posts on diffusion/scores/flows:

* What are Diffusion Models?

* Building Diffusion Models’ theory from ground up
* Flow With What You Know

* Avisualdive into conditional flow matching

148

https://uvagedl.github.io/
https://fabianfuchsml.github.io/alphafold2/
https://alchemybio.substack.com/p/spherical-equivariant-graph-transformer
https://alchemybio.substack.com/p/spherical-equivariant-graph-transformer
https://alchemybio.substack.com/p/spherical-equivariant-graph-transformer
https://sites.google.com/view/ggm-log-tutorial/home
https://lilianweng.github.io/posts/2021-07-11-diffusion-models/
https://lilianweng.github.io/posts/2021-07-11-diffusion-models/
https://iclr-blogposts.github.io/2024/blog/diffusion-theory-from-scratch/
https://iclr-blogposts.github.io/2024/blog/diffusion-theory-from-scratch/
https://d2jud02ci9yv69.cloudfront.net/2025-04-28-flow-with-what-you-know-38/blog/flow-with-what-you-know/
https://d2jud02ci9yv69.cloudfront.net/2025-04-28-flow-with-what-you-know-38/blog/flow-with-what-you-know/
https://dl.heeere.com/conditional-flow-matching/blog/conditional-flow-matching/
https://dl.heeere.com/conditional-flow-matching/blog/conditional-flow-matching/
https://lilianweng.github.io/posts/2021-07-11-diffusion-models/
https://dl.heeere.com/conditional-flow-matching/blog/conditional-flow-matching/

References

Abramson, J., Adler, J., Dunger, J., Evans, R., Green, T., Pritzel, A., Ronneberger, O., Willmore, L., Ballard, A. J., Bambrick, J., & others. (2024). Accurate structure prediction of biomolecular interactions with
AlphaFold 3. Nature, 630(8016), 493-500.

Alon, U., & Yahav, E. (2020). On the bottleneck of graph neural networks and its practical implications. ArXiv Preprint ArXiv:2006.05205.

Arnaiz-Rodriguez, A., & Velingker, A. (n.d.). Graph Learning: Principles, Challenges, and Open Directions. Tutorial presented at 41st International Conference on Machine Learning (ICML), Vienna, Austria, 22 July
2024. [Online]. Available: https://icml2024graphs.ameyavelingker.com/.

Azabou, M., Ganesh, V., Thakoor, S., Lin, C.-H., Sathidevi, L., Liu, R., Valko, M., Veli¢kovic¢, P., & Dyer, E. L. (2023). Half-hop: A graph upsampling approach for slowing down message passing. International
Conference on Machine Learning, 1341-1360.

Battaglia, P., Hamrick, J. B. C., Bapst, V., Sanchez, A., Zambaldi, V., Malinowski, M., Tacchetti, A., Raposo, D., Santoro, A., Faulkner, R., Gulcehre, C., Song, F., Ballard, A., Gilmer, J., Dahl, G. E., Vaswani, A.,
Allen, K., Nash, C., Langston, V. J., ... Pascanu, R. (2018). Relational inductive biases, deep learning, and graph networks. ArXiv Preprint ArXiv:1806.01261. https://arxiv.org/pdf/1806.01261.pdf

Bresson, X., & Laurent, T. (2018). Residual Gated Graph ConvNets. https://arxiv.org/abs/1711.07553

Bronstein, M. M., Bruna, J., Cohen, T., & Veli¢kovi¢, P. (2021). Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges.

Bronstein, M. M., Bruna, J., LeCun, Y., Szlam, A., & Vandergheynst, P. (2017). Geometric Deep Learning: Going beyond Euclidean data. IEEE Signal Processing Magazine, 34(4), 18-42.

Canturk, S., Liu, R., Lapointe-Gagné, O., Létourneau, V., Wolf, G., Beaini, D., & Rampasek, L. (2023). Graph positional and structural encoder. ArXiv Preprint ArXiv:2307.07107.

Chen, J., Gao, K., Li, G., & He, K. (2022). NAGphormer: A tokenized graph transformer for node classification in large graphs. ArXiv Preprint ArXiv:2206.04910.

Daigavane, A., Ravindran, B., & Aggarwal, G. (2021). Understanding Convolutions on Graphs. Distill. https://doi.org/10.23915/distill.00032

De Cao, N., & Kipf, T. (2018). MolGAN: An implicit generative model for small molecular graphs. ArXiv Preprint ArXiv:1805.11973.

Dumoulin, V., & Visin, F. (2018). A guide to convolution arithmetic for deep learning. https://arxiv.org/abs/1603.07285

Dwivedi, V. P., & Bresson, X. (2020). A generalization of transformer networks to graphs. ArXiv Preprint ArXiv:2012.09699.

Dwivedi, V. P., Rampasek, L., Galkin, M., Parviz, A., Wolf, G., Luu, A. T., & Beaini, D. (2022). Long range graph benchmark. Advances in Neural Information Processing Systems, 35, 22326-22340.

Errica, F., Christiansen, H., Zaverkin, V., Maruyama, T., Niepert, M., & Alesiani, F. (2023). Adaptive message passing: A general framework to mitigate oversmoothing, oversquashing, and underreaching. ArXiv
Preprint ArXiv:2312.16560.

Eschenburg, K. M., Grabowski, T. J., & Haynor, D. R. (2021). Learning cortical parcellations using graph neural networks. Frontiers in Neuroscience, 15, 797500.
Fey, M., Kocijan, V., Lopez, F., Lenssen, J. E., & Leskovec, J. (n.d.). KumoRFM: A Foundation Model for In-Context Learning on Relational Data.
Fuchs, F., Worrall, D., Fischer, V., & Welling, M. (2020). Se (3)-transformers: 3d roto-translation equivariant attention networks. Advances in Neural Information Processing Systems, 33, 1970-1981.

Geisler, S. M., Kosmala, A., Herbst, D., & Gunnemann, S. (2024). Spatio-spectral graph neural networks. Advances in Neural Information Processing Systems, 37, 49022-49080.

149

References

Hamilton, W.L. (2020). Graph Representation Learning. In Synthesis Lectures on Artifical Intelligence and Machine Learning. Morgan & Claypool.

Hamilton, W.L., Ying, R., & Leskovec, J. (2017). Inductive representation learning on large graphs. Proceedings of the 31st International Conference on Neural Information Processing Systems, 1025-1035.
Ho, J., Jain, A., & Abbeel, P. (2020). Denoising diffusion probabilistic models. Advances in Neural Information Processing Systems, 33, 6840-6851.

Karami, M. (2023). Higen: Hierarchical graph generative networks. ArXiv Preprint ArXiv:2305.19337.

Kipf, T. N., & Welling, M. (2017). Semi-Supervised Classification with Graph Convolutional Networks. International Conference on Learning Representations. https://openreview.net/forum?id=SJU4ayYgl
Kreuzer, D., Beaini, D., Hamilton, W., Létourneau, V., & Tossou, P. (2021). Rethinking graph transformers with spectral attention. Advances in Neural Information Processing Systems, 34, 21618-21629.
Laabid, N., Rissanen, S., Heinonen, M., Solin, A., & Garg, V. (2024). Equivariant Denoisers Cannot Copy Graphs: Align Your Graph Diffusion Models. ArXiv Preprint ArXiv:2405.17656.

Leskovec, J. (n.d.). CS224W: Machine Learning with Graphs. Stanford University, Stanford, CA, Fall 2024. [Online]. Available: https://web.stanford.edu/class/cs224w/.

Li, Y., &King, I. (2020). Autograph: Automated graph neural network. International Conference on Neural Information Processing, 189-201.

Liao, R., Li, Y., Song, Y., Wang, S., Hamilton, W., Duvenaud, D. K., Urtasun, R., & Zemel, R. (2019). Efficient graph generation with graph recurrent attention networks. Advances in Neural Information Processing
Systems, 32.

Lipman, Y., Chen, R. T., Ben-Hamu, H., Nickel, M., & Le, M. (2022). Flow matching for generative modeling. ArXiv Preprint ArXiv:2210.02747.
Min, Y., Wenkel, F., & Wolf, G. (2020). Scattering gcn: Overcoming oversmoothness in graph convolutional networks. Advances in Neural Information Processing Systems, 33, 14498-14508.

Niu, C., Song, Y., Song, J., Zhao, S., Grover, A., & Ermon, S. (2020). Permutation invariant graph generation via score-based generative modeling. International Conference on Artificial Intelligence and Statistics,
4474-4484.

Ou, M., Cui, P., Pei, J., Zhang, Z., & Zhu, W. (2016). Asymmetric Transitivity Preserving Graph Embedding. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, 1105-1114. https://doi.org/10.1145/2939672.2939751

Perozzi, B., Al-Rfou, R., & Skiena, S. (2014). DeepWalk: online learning of social representations. Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 701-
710. https://doi.org/10.1145/2623330.2623732

Qiang Liu. (2024). PyTorch RectifiedFlow. https://github.com/lqiang67/rectified-flow

Rampasek, L., Galkin, M., Dwivedi, V. P., Luu, A. T., Wolf, G., & Beaini, D. (2022). Recipe for a general, powerful, scalable graph transformer. Advances in Neural Information Processing Systems, 35, 14501-
14515.

Sanchez-Lengeling, B., Reif, E., Pearce, A., & Wiltschko, A. B. (2021). A Gentle Introduction to Graph Neural Networks. Distill. https://doi.org/10.23915/distill.00033
Sato, R. (2020). A Survey on The Expressive Power of Graph Neural Networks. https://arxiv.org/abs/2003.04078

150

References

Satorras, V. G., Hoogeboom, E., & Welling, M. (2021). E (n) equivariant graph neural networks. International Conference on Machine Learning, 9323-9332.

Scarselli, F., Gori, M., Ah Chung Tsoi, Hagenbuchner, M., & Monfardini, G. (2009). The Graph Neural Network Model. IEEE Transactions on Neural Networks, 20(1), 61-80.
https://doi.org/10.1109/TNN.2008.2005605

Shirzad, H., Hajimirsadeghi, H., Abdi, A. H., & Mori, G. (2022). Td-gen: graph generation using tree decomposition. International Conference on Artificial Intelligence and Statistics, 5518-5537.

Shirzad, H., Velingker, A., Venkatachalam, B., Sutherland, D. J., & Sinop, A. K. (2023). Exphormer: Sparse transformers for graphs. International Conference on Machine Learning, 31613-31632.
Simonovsky, M., & Komodakis, N. (2018). Graphvae: Towards generation of small graphs using variational autoencoders. International Conference on Artificial Neural Networks, 412-422.
Sohl-Dickstein, J., Weiss, E., Maheswaranathan, N., & Ganguli, S. (2015). Deep unsupervised learning using nonequilibrium thermodynamics. International Conference on Machine Learning, 2256-2265.
Song, Y., Sohl-Dickstein, J., Kingma, D. P., Kumar, A., Ermon, S., & Poole, B. (2020). Score-based generative modeling through stochastic differential equations. ArXiv Preprint ArXiv:2011.13456.

Sun, C., Li, C., Lin, X., Zheng, T., Meng, F., Rui, X., & Wang, Z. (2023). Attention-based graph neural networks: a survey. Artificial Intelligence Review, 56(Suppl 2), 2263-2310.

Topping, J., Di Giovanni, F., Chamberlain, B. P., Dong, X., & Bronstein, M. M. (2021). Understanding over-squashing and bottlenecks on graphs via curvature. ArXiv Preprint ArXiv:2111.14522.

Velickovié, P., Cucurull, G., Casanova, A., Romero, A, Lio, P., & Bengio, Y. (2018). Graph attention networks. The 6th ICLR.

Weiler, M. (n.d.). Equivariant neural networks — what, why and how? An introduction to equivariant & coordinate independent CNNs - Part 1. Blog post, Maurice Weiler’s website, Nov. 7, 2023. [Online]. Available:
https://maurice-weiler.gitlab.io/blog_post/cnn-book_1_equivariant_networks/.

Wu, Q., Zhao, W., Li, Z., Wipf, D. P., & Yan, J. (2022). Nodeformer: A scalable graph structure learning transformer for node classification. Advances in Neural Information Processing Systems, 35, 27387-27401.
Xu, K., Hu, W., Leskovec, J., & Jegelka, S. (2019). How powerful are graph neural networks? Proc. of ICLR.

Xu, Keyulu, Li, C., Tian, Y., Sonobe, T., Kawarabayashi, K., & Jegelka, S. (2018). Representation learning on graphs with jumping knowledge networks. International Conference on Machine Learning, 5453-5462.
Yan, Q., Liang, Z., Song, Y., Liao, R., & Wang, L. (2023). Swingnn: Rethinking permutation invariance in diffusion models for graph generation. ArXiv Preprint ArXiv:2307.01646.

Ying, C., Cai, T., Luo, S., Zheng, S., Ke, G., He, D., Shen, Y., & Liu, T.-Y. (2021). Do transformers really perform badly for graph representation? Advances in Neural Information Processing Systems, 34, 28877-
28888.

Ying, R., You, J., Morris, C., Ren, X., Hamilton, W. L., & Leskovec, J. (2018). Hierarchical Graph Representation Learning with Differentiable Pooling. Advances in Neural Information Processing Systems, 31.
https://proceedings.neurips.cc/paper/2018/file/e77dbaf6759253c7c6d0efc5690369c7-Paper.pdf

You, J., Ying, R., Ren, X., Hamilton, W., & Leskovec, J. (2018). Graphrnn: Generating realistic graphs with deep auto-regressive models. International Conference on Machine Learning, 5708-5717.
Zhao, L., & Akoglu, L. (2019). Pairnorm: Tackling oversmoothing in gnns. ArXiv Preprint ArXiv:1909.12223.

151

